Linux From Scratch

Linux From Scratch

Table of Contents

ALY e IS ol = L (o] o PR
GerardBeekKmans Main DOCUMIEIITcveeeeee e et e et e e e et e et e e e e e et e e e e e e ea e e eae e e e e eeaeeerneeernnns 1

MichaelPeters- Apple POWErPCAAItIONSuuuuurriiiiiiirriieeriesrsesrssssssssesseeseeeeeeereeeereeeeeererrrrerreeraeeerees 1

[BL<Y0 [Tor=1 110 o W UUTT TP
RaL=) =101~ T TT TP
Who Would WaNE 10 TEAT TS DOOKeeeeeee ettt ettt et e et e et e et e et e et e e e e e e e e e e e e enes 6

Who would Not WaNt 0 TEAA thiS DOOKceveeeee ettt ettt ettt e et e e e e et e e e e e e e e e e e e e e e e eernans 7

L@ 1o = Va1 (o] 1 SRR PPUUPRRPRRP
e L Ml 10110010 [(01470 o WO €

Partll — Installationof a basicsystemon INtel SYStEMS..........cccoeiiiiiiiiiiiii . 8
Partlll — Installationof a basicsystemon Apple POWErPCSYSIEMS.........cccoeeeeeeeiiieiiee e 8
PartlV = ADPENAIXESo i i iiie oo —————————————————————————————————— 8

I o= O I 11 Yo [o1 4 To] o F TR (

How things are goiNQt0 D AOME.uiiiiiiii ettt e e e e e ees 12
BOOK VEISIONS ...tttk e ekt e 4okt e o4 R £t e oAbt e et e e bt e e e e e e e e 1
ACKNOWIBAGEIMENTS. ...t eeeee ettt e et e ekt e e 4kt e e 4okttt e e st e e e ek e e e e e s e e e e e e e e e e e nnnne s 1
(O 0 F=TaTo 1] 0T o TR PSP PP PPPPPP PP

Mailinglists @aNd ArChIVES.ccoi i ittt aab e aa et s ettt b e e s s ss s s s ssssssssnssnnsnnnnnes 17
Lo [EY o U =TT 1

Linux From Scratch

Table of Contents

HOW 10 INSTAIL 8 SOOIV ... et eeee ettt ettt ettt et e ettt e e et e et e e e e et e et e e e e et e e eeereeaeeeenaas 2C

How and WHY thingS Al AONE........uuuuiiiiiiiiiiiieiieiiieei ettt e e et e et e e e et e e e e e e e e e e e e et e e e e e et e e e e e e e eaaeaaaeaaaaaaaaaaaaaeas 38

About debuggiNngSYMDBOIS.coviiiiiiiieeieeeeeee e 3¢

TS 7= 11 0 T 11 oo PRSP PPPPPPPPP 4
A noteon the glibC—CryPtPACKAGE.uuutreiiiiiiiiiiiiiiiieieeeeeeesae e eee e e e e e eeeeeeeeeeeeeeeeeraeeeeeees 43
LTSy =1 T o T 1T oo PP 44
(70 o)VA1aTo o] (o MV ST T 1o 7= TRV 1 (=T YRR 45
TaTSY 7=V o LT = o PSSP UPUUURUSTRPRR 4!
TaTSY eV T Te L AT o USSP UUSRRPUSPRPPP 4
INSEAIINGMAKEo e bbbt a et bt bbbt e bttt bttt bttt bttt bt st rnntnnnnrnnnnes 4
LR TSY 7= 11 0 1= PP 4
INSEAIlINGSNEIULIIS. ... e 47
LTSy =1 o 7= T OO :
INSEAIING TEXEULIIS ...ttt e et e e e e e e e e e e et e e e e ee e e e et e e e et e eeeee e et e e eee et e e e eaaeeaaeaaaaaaaeaaaaaaaaaaaaaaaaens 4€
CreatingpassWBNAArOUPDTIESuvuviiiiieiiiiieeeeee ettt e e e e e e e e e e e e aa e 48

Linux From Scratch

Table of Contents

INstalling baSICSYStEMSOFIWAIE.uveiiiiiiiiiiiiiieeieeee ettt e et e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e aaeeaaaaaaaaaas 49
Enteringthe Chroot' @0ENVIFONMENL.........uiiiiiiiiiiiiiiiiiiiieeiee e eeeeeeaeee e e essssessesssssssesssssssessssssseseeeeeees 49
INSEAIINGED. .. vtvevvieieeieeeeeee ettt e et e et e e e e e e e et e e et e et e e e e e e eeeeaeeae e et e e e e e e e aa et aaeaaaaeaeeeaaaaaaaaaaaaaeaaaaaaaaaaeas 4
LTSy =1 0 = Lo o TP PPPPPPPPPPPP 4
INSEAIINGGCC ... 5(
LTSy =1 0 =1 0o PP PPPPPPPPPPPP 5(
INSTAIINGIMAWK ... ettt e e s e e e s e e e e e e e e eeeseeeeeeeeeeeeeeaeeaaeeaaeeaaeaaaaaaaaaaaaaaaaaaaaes 5(
TatSy eV o T T aTe (U] PSPPSR 51
TaTSY eV T To =Y 0 o= T« H PSSP SPPEPPRPPPR 51
INSEAIINGINCUISES.o naaanrnanes 5]
[N SEAIING LESS. . .vtvvvttteittetteeeeeeteee ettt e e et e e e e eeeeeeeeeeeeeeeeeeeeetee eaaeaaaeeaaaaaeeaaaaaaaaaeaaaaaaaaas 5.
LTSy =1 o =T o ORI 5.
INSEAIINGMA ... e 5.
INStAIING TEXINTO. ..o e ———————— 5
INStAllINGAULOCONT 5z
INSEAIING AULOMAKE b et e bttt sttt e s s e s st s s s s s s s s s s s e s s e e s s e e e s eeeanneeeeeeeeeeeees 5z
INSEAIINGBASK.coiiiiiiiieieeee e 5!
INSEAIING EIEX 111ttt e e e e et e e e et e e e e e e et e e e et eeeeeaaeaaaeeaaeaaeeaaaaaaaaaeaaaaaaaeas 5.
INStAIINGBINULIIS ... 5¢
LTSy =V 0 = 74T o 72O PP PPPPPPPPP 5¢
INSEAIING DIFfULIS. ...ttt st s st s s s s s s s s s s s s e e s nnnnenenees 5E
INStAlING LINUX KEINEL.....coiiiiiiiiieeeeeeee e 55
LTSy oL a0 T 2 Y oo o P PPPPPRPP 5¢€
LTS =1 o 1 OPPPPPPPPRS 5
INSEAIING FIIEULIISttt sttt s s s st s st s s s s s s s s s s s s nnsnnnnenenees 5¢
INSEAIINGGIED . . eieieiiiee ettt 5
INSEAIINGGIOT....ooeeiiiiieeee e 5
TaTSY eV T Te L AT o USSP UUSRRPUSPRPPP 5
TSy =11 T o o T PSP PPPPPPPPPPPP 5
INSEAIINGLIDLOOL. . ceveeeeieeeeeeeeee e 5¢
INSEAIING LINUXBG.ttt sttt sttt sttt sttt st s st s s s st s s s s s s s s s s s nnsnnnnennnnes 5¢
LTS 7= 11 o 1o T PPPPPPPPRS :
INSEAIINGMAKEo e bbbt a et bt bbbt e bttt bttt bttt bttt bt st rnntnnnnrnnnnes 5¢
TaTSY 2=V e IS =T | TP PPPPPPPPPP 5¢
Installing ShadoWPASSWOITSUILE.ccoviiiiiiieeeeee e, 59
INSEAIINGIMAN ettt e e et e e e e e e ee e e et e e e et e et et ee e e e e e e e e e e eaeeeaeeeeeeaeeaaaeeaaaaaeaaaaaaaaaaeaaaaaaaeas 6/
INSEAIINGMOAULILS ... vevveeeieeeeee ettt e e e e e e et e et e e et e e et e e e e e e e et e et e e e et ee et e e et aeeaeaeaaaaaaaaaaaaaaaaaaaaaaaaens 6(
INSEAIING PIOCINTQ.ttt sttt sttt st s st s st s st s s s s s s s s s s s s s e e s nnnnennnees 6(
INSEAIINGPIOCPS. ..ceeieiieee ettt 6(
INSEAIING P SIS ..ceiiiiiiii ettt 6]
LR TSY =11 0 1= O PPOPPPPPRS 6.
Installing Start=stop—daemQN..............cooiiiiiiii 61
INStAllINGSYSKIOUQ. ... ——————————- 61
INSEAIING SYSVINE. ...ttt ettt sttt sttt s sttt s st s s s st s s s s s s s s s s s s nnsnnnnnnn e e e 62
LTSy =1 o 7= T OO 6.
INSEAIING TEXEULIIS ...ttt e et e e e e e e e e e e et e e e e ee e e e et e e e et e eeeee e et e e eee et e e e eaaeeaaeaaaaaaaeaaaaaaaaaaaaaaaaens 62
INSEAIING VI 111ttt et e e et e e e et e e e eeeeeeeeeeeeeeeeee e e e e e e e e e e aaeeeaeeeeeaaeeeaaeaaaaaaeeaaaaaaaaaeaaaaaaaeas 6.
INSEANINGUEI=LINUX. ..eiieeeiceeeeeee e 63

Linux From Scratch

Table of Contents

Removingold NSSHBrary filES........coooiii i aa b aa b b aeeenaernrenene 64
Configuring @SSENTIAISOItWAIE.ciiii bbb e e e e e e e b essss st s s s ssssssssssssssnsssnsssessenseneseees 65
ConfiguriNGGIIDGccooiiiiieee s 6"
ConfiguringDYNAMICLOAAEN.uuuiuiiiiiiiiiiiiia et s e aeeaa e s s s aesbssessssasssssssssssssssssssssssnnsennsnes 66
(@0 ailo 18170 To | o PP 6¢
ConfiguriNGSYSKIOQE......coviiiiiiiiiiieeee e, 67
ConfiguringShadoWPasSSWOIESUILE...........cooee i s 67
(OT0] a¥ilo T8 T T0 SV 111 PSPPSR 68
Creatingthe /Var/TUN/ULMIIIEvvveeieeeeeeeeeeeeeeee ettt e aaaaaeas 68
(@0 ailo 10110 Te Y10 PP 6
Chapter 6. Creating SyStEMbDOOL SCIIPLS.......ccoiiiiiiieie e e aa e aneaaneannannnennees 70
What is BEINGAONENEIEooveeiieeeeeeeee L 7
Createthe direCtories AN MIASEEIfIlES. eee ettt ettt e et e et e e e e e et e e e e e e e e e e ernens 72
(O (Y= L] aTo A TSN (=1 01001 0o 1] o) SRR 7E
Creating the NAIT SCIIPLuueieiiiiiiieei ettt e et e e e et et e e et e et e et et e e ettt et e et e et e e e eeeetaeetaaetaaeaaaeaaeeaaaaaaaaaaaaaaaaaas 7
Creating the MOUNLES SCIIPL........ccoi i e 77
Creating the UMOUNLES SCIIPL......cvviiiiiiiiiiiiiieeee e 78
Creating the SENASIONAISSCIIDL.vvvviiiiiiiiiiiee et 79
Creating the CheCKIOOtSCHIPL.ciiiiiiieieeee e, 80
Creating the SYSKIOQASCIIPL......cco e 82
Setting up SYMIINKS aNd PEIMISSIONS.cvvviiiiiiiiiiiiiee ettt ettt e aa s 84
Creating the [etC/fStaDTIlE.ccci ittt e s e et et s s s e s e e s e e e e e e e e neeaeeeaeeeaaeeeeees 8E
Chapter 7. Settingup basSiCNEIWOIKING.........ccvviiiiiiiiiiiiii e, 86
a1 ao o [V o1 1o o F TR PTUTRPRTR €
INStAlliNG NETWOIK SOfIWAIE.vviiiiiiiieiiiiiieeiiee ettt e e e e e e e e et e e e et et e e e e e e e e e et e e et e e e e e e e e aaeeaaaeaaaaaaeaaaaaaaaaaaaaens 88
INStAlliNGNETKIE—DASE.o e 88
INSEAIlINGNEITTOOIS. ... e 8¢
Creating NEtWOIK DOOL SCIIDES. ettt ae et s st s s s st s s s s s s s s s s s s s s e s s s e s s sessnnseneeenes 89
Creatingthe/etc/init.d/I0calnebOOLSCIIDL........ccoi i 89
Settingup PermMisSSIONBANASYMIINKuuuiuuiiiiiiiiiieiiieeee e eeer e rrrrrerrrerrretrerereereeess 89
Creatingthe /etc/hoStNAMBIE.ooooeiii 90

Linux From Scratch

Table of Contents

Creatingthe/etC/NOSEFIIEccvveeieeiieeeeeeeeee 90

Creatingthe/etc/init.d/ethnefile...............oo s 91

Settingup PermisSSIONBANASYMIINKuuuiiuuiiiiiiiiiiiiieiee e errrrreraeerrrerrerrreereeess 92
Chapter 8. Making the LES systembootable.............uuviiiiiiiiiiiiiiieiieeeeeeeeeeeee e 93
a1 oo o [V o1 Te] o F TR PTUTPPT ¢
INSLAIING B KEINEL....ceiiiiieeeeeeeeeeeeeee e 9
PN [T To Iz T I =Y a1 (Y20 (o N PP PPPPPPPPPP 9¢

TESHNATNE SYSIEIM. ... e ——————————— 9

Creating @ NEW PANTITIONvvevreeeeeeieeieeeeeeeeeeeeeee e e e e e e e e e e e e e e et e e et et et e et et e e et e e et ea et e e et eaaaaeeeaaaaaeeaaeeaaaaaaaaaaaaaaaaaaaaaaaaaens 10¢
MOUNtING the NEW PAITILIONuuviviiiiiiiiiiiiiiiiesiiseeeebeseeeeeeeeseaesseessesseeesseesessssssseesseessssssessessssesseeeeeeeeeeeeeeeeeeeeees 106

(O (Y= L] aT0 0 [T 0o (0] 1= OO 10

Linux From Scratch

Table of Contents

(@70] o)VA1aTo o] (o MV ST T 1o = TRV A 1 (=T PP PPTPPPPPPPPP 117
INSEAIINGGIED. ..ciieeeieee e 11
TaTSY eV T o L 4T o PP PPPPPPPPP 11
INSEAIINGMAKEottt bbbttt bttt ettt sttt e sttt st s e st a e st e st s e et eneeeeeaeees 11¢
LTSy 7= 0 TS PP 11
INStAIING SNEIULIIS. ... 11¢
INSEAIING T .. —————————— 12
INSEAIING TEXEULIIS ... vvvvvvetieeeeee ettt ettt et et e e et e e et e e et e e et eaaaaaaaaaaaeas 12C
(O (=Y: L] aTo oo RTo V0 = LA 0 [0 [0 101)11y PSPPI 120

Installing basiCSYStEMSOFWAIE.eeiiiiiiiiiiiieeeeeeeeeeee e 122
Enteringthe Chroot' @0ENVIFONMENL.uuiiiiiiiiiiiiiiiieeiieeieee e eee e eeeeeeeeeeseeeeeeeeeeeeeeereeraeereeeaeeeaeeess 122
TaTSY =L o o USSP 12
LTSy 7=V o T = Lo o TP 12:
INSEAIINGGCC. ..o 12!
LTSy 7=V o ST E 0 o PP 12:
INSEAIINGIMAWVKttt st s st s s st s s s s s s s s s e s s s e s s e e s s e e s ansannnaaneeeeeeeees 12:
Tty eV T Te T T aTe [U L] USSP 124
Tty eV T To =Y 0 o= o H USSR 124
INSEAIINGINCUISES.o 124
LTSy P o T TP PPPRPPPPP 12!
LTSy =1 o =T o PP 12!
INSEAIINGMA ... ————— 12!
INStAllING TEXINTO. ..o —— 12¢
INStAIlINGAULOCONT ... 126
INSEAIlING AULOMAKEo iei ettt a et s bt st s st s st s s s st s s s s s s s s e s s s s s nnnnnnnnnees 126
INSEAIINGBASK.coiiiiiiieeee 12¢
LTSy eV o T = PP PPPRPPPPP 12
INStAIlINGBINULIIS ... 127
LTSy =V o =4 o 72PN 12°
INSEAIING DIFfULILS.ttt s s s s s e s s s e s s e e e s e e s senaaenaeeneeeeeeees 12¢
INStAlliNG LINUX KEINEL.....ooiiiiiiieieeee e, 128
TR TSy oV 0 2 Y oo o PSPPSR 129
LTSy =V o 1P 12
INSEAIING FIIEULIIS ettt s s s s s s s s s s s e s s e s s s e s s e e s s e e s seeaaenaeeeeeeeeeees 12¢
INSEAIINGGIED. ..ciieeeieee e 13(
INStAINGGIOf.....ooeieieeee 13(
TaTSY eV T e L 4T o PP PPPRPPPPP 13
LTSy =11 o o T PP 13(
INSEAINGLIDLOOL. . ceviieieeeeeeeeeee e 13]
INSEAIING LINUXBG. ... ettt ettt sttt s st s s s s s s s s s s s s e s s s e s s s e s s e e sseeanenaeeeeeneeeees 131
INSEAIINGMAKEottt bbbttt bttt ettt sttt e sttt st s e st a e st e st s e et eneeeeeaeees 13:
INSEAIING SNEIULIIS. ...ttt e e e et e e e e e e e e e eeeeeeeaeeaeeeaeeeeeeaaeaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 132
Installing ShadOWPASSWOITSUILE.cccee e 132
LTSy eV T o 1=V PP PPPRPPPPP 13
INSEAIINGMOAULILS ...ttt e et e et e e e e e e et e e et e aaaaeaaaeens 133
INSEAIINGPIOCINTQ..... ..ttt s s s s s ss s s s s s s s e s s s e s s e e s s ee s s e e s aeeaaeeaeeeeeeeeeees 13:
INSEAIINGPIOCPS. ..ccieeeiiiei et 13

Vi

Linux From Scratch

Table of Contents

INSEAIINGPSMISC...ciiiiiiiii i 13
LTSy 7=V 0 TS PP 13
Installing Start=stop—daemMON.............ccoooviiiiiiii 134
INStAlING SYSKIOQQ. ... —— 134
LTSy =1 a0 YA YA a1 PP 13
INSEAIING T .. —————————— 13
INSEAIING TEXEULIIS ...ttt ettt et e e et e e et e e et eeaaaeaaaaaaaens 13E
LTSy 7=V T o Y2 PP PPPRPPPPP 13!
INSEAINGUEI=LINUX. ..etieeiieei e, 136
INStAlliNGPMAC—ULIScooiiiiiiiieeeeeeee e 136
Removingold NSSHBrary filES.......ccooo i 138
Configuring @SSENHIAISOIIWAIE.uuuiiiiiiiiiiiii i ee e e e s e s s ss s sssssessesssesseesseeseeessseeeeeeeeeeeeeeeeees 139
ConfigurNGGIIDGccoieiieeee e —————— 13¢
(Ofe] ailo Ul uTale]AYiar:Taa1Tod M- o [y PP 140
ConfiguUrNGSYSKIOQEcoeieiiiiiiiee et 140
ConfiguringShadowPasSWOIEBUILE.............cooeiiiii e, 141
(@0 N0 TU T 10 Y1V 11 PP 141
Creatingthe /Var/TUN/ULMAIEoveeiieeeieeeeeee e, 142
(@0 o 1iTo 11170 Y10 P PPPPPPPPPPP 14:
Chapter 12. Creating SYSteMDOOL SCHPLSivviiiiiiiiiiie e, 143
What is BeINGAONENEIE......cooeeiiieeeee 14¢
Createthe direCtories and MIASEEIfIlES. eee ettt et e e e e et e et e e e e e e e e e e e e reenaeeans 145
Creating the FEDOOL SCIIPL.c.iiiiiiii i eis e ee e ettt bbbt a et s s st s s st s s st s st s s s s sn st s s s s e ssnnnnnnnnnes 14¢€
Creating the NAIT SCIPLvvvieiiiieiiee ettt e et e et e aaaaaaaaaaaeens 14¢
Creating the MOUNLES SCIIPL.........cooiii i ansaaneannennrennnes 150
Creating the UMOUNTES SCIIPL.vviiiiiiiiiiieeiiiee ettt e et et eaaaaaaaeeas 151
Creating the SENASIONAISSCIIDL.vvevrierriieiiiieieeee ettt e aaaeaaaaaaaaaens 152
Creating the ChECKIOOESCHIPL. ...ciii i 153
Creating the SEICIOCKSCIIPL .. .vvvviiiiiiiiei e, 155
Creating the SYSKIOQASCIIPLccoe i aeaaneannaanrennnes 156
Setting Up SYMIINKS N0 PEIMISSIONS.vvvvvveiieeiiieiiieeeeeeeee ettt ettt et e et ettt e e et e e e et e e e e e e e e e e eaaaeaeetaaaaaeaaaaaaaaaaaaaaaaaans 158
Creating the [etC/fStabfile.........ccoiii oottt et e ettt e et enat e s e renrnnnnnnnnees 15¢

Vii

Linux From Scratch

Table of Contents

Chapter 13. Setting UP DASIC NETWOIKING.uuuuuuurturtiuitiatieitiateeeresaereeaeeareaareeesesseesssssssessssssssssssseessessssesseessees 160
a1 (o o [V o1 Te] o FT TR 1¢
INStAlliNg NETWOIK SOFIMAIE.uuiuiiiiiiiiiiiiiiiieeeiae et e e e e s eeesaeesessssesseesaaeseeeseesaeesseesseeaeeeeeeeeaeeeeeeeeees 162
INStAlliNG NETKIE=DASE.o bbb e b e e s e s s b s s s s ssssssssnensnnnenenees 162
INStAIlINGNEITLOOIS. ... —— 162
Creating NEtWOIK DOOL SCIIDES.ttt e e se s assssssssessessaesseeeseeseeesseeaaeeaeeeeaeeeeeees 163
Creatingthe/etc/init.d/I0calnebOOLSCHIDL.........ccoiiiee s 163
Settingup PermisSioNBANASYMIINKuuuuuiiieiiiiiiieiii e sessaessssesseesaeereaeeeeeeees 163
Creatingthe/etc/hosStNamM@IE............ooovviiiiiiii 164
Creatingthe /etC/NOSEFIlEc.oovvieeiiieee . 164
Creatingthe/etc/init.d/ethnefile. ... s 165
Settingup PermisSioNBANASYMIUINKuuuuuiuieiiiriiie e sesasessssesesesaeereaeerereees 166
Chapter 14. Making the LES systembootable...........ccoooiiiiiiiiii e reseeeeeees 167
a1 o o [U o1 To] o FT TR 1¢
INSEAIING B KEINEL....eeiieiiiieieeeeeeeeee ettt et e e et e e e e e e e e e e et e aaaeaaaaaaaaeeas 16
L0 oo F= LT T T 200 PSPPI 17
TESHNATNE SYSIEIM....cccee e ————— 17
A o o A YA Y o] o1 a0 (= PP 172
Appendix A. PackagedesCriptiONS..........ovviiiiiiiiiiee e 173
a1 o o [U o1 To] o FT TR 17
{1110 oT TP 1
@0 11 (=Y 11 17
DESCIIPLON. ... ——————— 17
= TR 1
@0 11 (=Y 11 17
DESCIIPLON. ... ——————— 17
gz 1 (o] o FTT TP 1
@011 (=Y 11 17
DESCIIPLION. ... ——————— 17
{1 O PR 1
@011 (=Y 11 17
DESCIIPLION. ... ——————— 17
(70 101 o)1 [T S 17¢

Linux From Scratch

Table of Contents

(S 0] (0103511 0 O 178

(O ol o - 1 /PRSP 178

T E 0 1
(@0 111= 101 17
DESCIIPLION. ... ——————— 17

o LY 1
(@0 11= 01T 18
DESCIIPLON. ... ——————— 18

10 111 :
(@0 111= 01 18
DESCIIPLION. ... ——————— 18

11T 18

0 Y072 1 (= 18

[00 = LY | o TP OPSPPPSPPPPPP 18]

a6 (1O 18

=T 10T T o S :
(@0 11(= 101 18
DESCIIPLON. ... ——————— 18

I o U ST 1
(@0 11= 01T 18
DESCIIPLON. ... ——————— 18

B TSN o] T 183
o 18

INFOCINID. ¢ttt 18:

Lol (Y= T TR 18

10 P 18

0 =N 18

Y = 18
ISP 1
(@0 11(= 101 18
DESCIIPLON. ... ——————— 18

a1 PR 1
(@0 11(= 101 18
DESCIIPLON. ... ——————— 18
T 1
(@0 11= 01T 18
DESCIIPLON. ... ——————— 18

I 4010 R 1
(@0 11= 01T 18

Linux From Scratch

Table of Contents

DESCIIPLON. ... ——————— 18
10 T 18
LTy 7= | 00 18€
007511010 18¢
L0220 1Y 18¢
JUS) A 110 1 18¢
U (Yo 1 T 1
(@0 11= 01T 18
DESCIIPLON. ... ——————— 18
= 1010100) A 18¢
Fo LU 100 1Yz 16] S 18¢
P2 LU 10 (<1010 £} AP 18¢
o L0 10 Y0 o S 18¢
P U0 10T o0 F= 1 = PP PPPPPPPP 18¢
1T 0 01 18¢
F UL £ =] TR 1
(@0 111= 101 19
DESCIIPLON. ... ——————— 19
= Lo [0 Yo7 | TR 19
o LU 100 0 0= | €= 19]
ST o TR 1
(@0 11= 01T 19
DESCIIPLON. ... ——————— 19
1 PR 1
(@0 111= 101 19
DESCIIPLION. ... ——————— 19
T 1
DESCIIPLON. ... ——————— 19
DESCIIPLON. ... —————— 19
o T 19
= 1N 19
= N 19
10 19
(0] o] [70] o)V 19:
(0] o]0 L1101 PRSPPI 19/
721111 o 19
L 4= 19
LS (11010 1 PPNt 19!
U] RS 19
o e o 1] 1 T 19!
=0 [0 | 724 1T = 19¢
][0T 00 0 Y 19¢

Linux From Scratch

Table of Contents

74T 0 2P 1
(@0 111= 01 19
DESCIIPLION. ... ——————— 19

BZID2. .. vttt e e et — et — et a———t et et et a et e et e e et e et t e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaas 19
BUNZIPZ. ...t 19°
| 607) AT 19
A YA (=101 1YL = PP PUPPPRPRR 197

1] 1
(@0 11(= 101 19
DESCIIPLION. ... ——————— 19

(o 0410 Y= 10 1o [0 111 /PP 198
o7 T 19
Lo o 1 19

T D =T T 1¢
(@0 111= 101 P 19
DESCIIPLON. ... ——————— 19

A 1] 01 (0T £ J PSP PPUUPPPURPPPR 2(
(@0 11(= 101 20
DESCIIPLON. ... ——————— 20

o 0= 11 20
| ETE L TR 20
8T 1o o = o PP PPPPPPPPUPPP 20(
=10 | o] T T2 20(
AEDUGTS. ..o 20(
AUMPE2ES. ..o 20(
YA Y0 = 1A 10 1Yo L= 4 v~ T 201

L2 F= 1 0T 20:
E Y01 < 20
MKE2fSANAMKEIS.EXEZ.vve it e e e e et e e e e e e e st e e e s et e e s sebaeessetbnaeenes 201

00T 1Y i 011 T TR 201
L LT 1T 20

11 2
(@0 11(= 101 20
DESCIIPLON. ... ——————— 20

1S L 2!
(@0 11(= 101 20
DESCIIPLON. ... ——————— 20

CR . e ————————— 20
o 21101010 P 20
o 010 117/ A T 20
0] o SN 20
o o TR 20
o 1 20

Xi

Linux From Scratch

Table of Contents

FS o = T T LYo [204

[0 11070 (0] = 20/

o TR 20

1Ty = 20.
TR 20

0020 20.

000211 YRR 20:

1012210 o S 20«
0101 20

010 N 20

00T T 20

11 o PP 20

(0o« 20

LT] o SRR 2
(@0 111= 101 20
DESCIIPLON. ... ——————— 20
=10 =) o PN 20

FO D e ————————————————— 20

0= PPN 20

[() 1 R 2
(@0 11(= 101 20
DESCIIPLION. ... —————— 20
=10 [0 10010 207

o 1101100) 207

<o | PP 20

[0 10 A PP PPPPPPPP 20

AEOH e ——————————————— 20

0 (0o PP 20
QIONIML . 20¢

IOl . ——————————— 20

00 L 20

0 01 O 20

] 0100 L1 PP PPPPPPPPRPPPP 20¢
10T D o1 o 20¢

2o o 20

T 0] 201 20¢

170 4 PP 20

[0) i TP 20
0110 (0] 01 TP PPPPPPPPPPPPP 20¢
oo PP 20

PSDBL .o 20

[ESX =] G 20

FoY0) 111 20¢

10 TR 20
0010 10 1 R 21(

01 21

Xii

Linux From Scratch

Table of Contents

LA o PSPPSR PUPPPRRRR 2
(@0 111= 01 21
DESCIIPLION. ... ——————— 21

[0 1010741 o PP PPPPPPPPPPP 21
[0 742 (< P 21
[0 4] o PP 21
74 o= | N 21
41110 21
40 |11 TR 21
4 (0] {03 = P 21
40| (<] o 1P 21
41 210 =P 21
4 1= 21

0 =Y o 2
(@0 111= 101 21
DESCIIPLON. ... ——————— 21

o o) 01T PP 21
o T 21

] o) (oY) 2
(@0 111= 101 P 21
DESCIIPLON. ... ——————— 21

1100 T] TR 21
110 (oY) 4= 214
10 1T o 7= YU PRSP 214

T D4 TR 2
(@0 111= 101 21
DESCIIPLION. ... ——————— 21

o EY o Y PN 21
10 E 21

1 2
(@0 111= 101 21
DESCIIPLON. ... ——————— 21

=T 2
(@0 111= 101 21
DESCIIPLON. ... ——————— 21

] T U1 2
(@0 11= 01T 21
DESCIIPLON. ... ——————— 21

= EoY Y 7= L1 21¢
o 21100 FU 21
[0 72 L 21
[0 TT 0= 111 21¢

Linux From Scratch

Table of Contents

S o 1 21
) 0 Y/ 21
4] S 21
=103 (0] SUPT TP PPTRTTN 21
B . ettt ———— 21
0 10 11 017 PR 21!
1Y (T TP 21
DO S AT .. ettt et et 21¢
[T TP 21
FoTo 1= 10 0] PRSP 21¢
[T To< TR 21
10 210 o U R 21
PAINCIIK e e e et — bt — b bttt bttt bttt batttantrnnrnnnnnes 22(
011012/ PP 22!
QLT (=] 01PN 22(
PINEE . ..o, 22
0o PP 22
ST o PP 22
o110 PRSP PPPPPPP 22
Y1 7P 22
o 22
S = 22
(S P 22
0T 22
Iy ettt 22
U172 010 22
8 o) 100~ S 22
B FT = 22
VYL 1o T URTI 22
VD O L ettt ettt et e et r e e e —ta———r it —————— 22
Y5 PP 22
NS a6 [0 s X o] (0 AT U 11 (< TR 22:
@0 11 (=Y 11 22
DESCIIPLON. ... ——————— 22
CRAGE . —————— 22
(o 0110 TR 22
(o1 15 TR 22
201 PP 22
1721111 o PRt 22
(072111 PSP 22
F= TS (0T RSP TURR 22
oo o TR 22
T3 o PP 22
PASSWL. ... 22
ST SN 22
o N 22
CRPASSW ... 22/

Xiv

Linux From Scratch

Table of Contents

[0 7= ST PP 22¢
QrOUPAAA. ... 22¢

(o T0 T 0o [P PSPPSR 22°

[0 100 127 T PSP SOPPPPPPPPPPP 22F

00T o PP 22

0 11800 1 1Y/ PP 22"

0 11 011 1100 0 1Y/ N 225
oo o 111 o PP PPPPPPPPUPPPP 22"
04072 FS1o 1Yo PSSP PPPPPPPP 22F
TSN IY 10 Y= € SR 22°F

PV CK e ———————————— 22
0170 0] 1Y/ PP 22¢

LT 110 02PN 22¢

U ST =10 o 22
UYL= R 22

U oY= 11110 22¢

N 0LV T VAT | PP PPPPPPPPPP 226
.. 2
(@0 11= 01T 22
DESCIIPLON. ... —————— 22
0072 N 22

P2 10000 T PP 22
VYL = 1 22

0TS T AT 1R 227

Y00 111 2
(@0 11(= 101 22
DESCIIPLION. ... ——————— 22
[0 1T 0] 2170 o SR 22¢

[0 01210 OO OPPPPPPSPPPPP 22¢

1T 12T Yo 22!
INSMOA_KSYMOOPS_ClEAN ... uuveiiiiiieiiiiiiieieeeseeseeeeeeeeeeeeseeseeeeseessesesesseeeeeeeeeesaeeaeeeeaeaaeeeaeeeeeees 228
RCST 1 1= [22!

RCST A TSY ALY £ (0 o PR 228
SN0 1P 22

1S 2107 T 22

000 11111 22
L0 o o] 0P PPPPPPPPPPP 22¢
1001101010 Y 22"

g 101031111 TR 2
(@0 11= 01T 23
DESCIIPLON. ... ——————— 23
0T PP 2
(@0 11= 01T 23
DESCIIPLON. ... ——————— 23

XV

Linux From Scratch

Table of Contents

FE e ettt —————— 23

1| TR 23

(o] [o] 01 T=TaTo | 01PN 231

E 1| TR 23

LY Ao TR 23

SVSCH e 23

(o= Yo PO 23

0] PP 23

8 o) 100~ S 23:

Y11 7= 23;

M ettt ettt e et eh e ea e e e e e et eaeeaeeaeea e a e e et e e e eaeeaeea e e e e e e et e e e e eaeeh e e et eraeans 23

JTATz=1 (o] A TR 23;

RacY AT TP PPPR 2
@0 11 (=Y 11 23
DESCIIPLION. ... ——————— 23

LT EST <Y TR 23

1= PP 23

ST 1< =S 23

BT o [T P
@011 (=Y 115 23
DESCIIPLON. ... ——————— 23
Start=StOP=—AAEMON.......coiiiiiiiiieeeeee e, 23
@0 11 (=Y 11 23
DESCIIPLON. ... ——————— 23
APPENIX B. RESOUICES.o iiiiiii i iee i i e et ettt a st e s bt s sttt st st s s s st s st st s st s s s s e s s s s s s e e s eeesaeeeneneeees 23¢
a1 o o [U o1 To] o FT TR 2
B OOK S . vttt et e et et e et e ee e reeaeetet ettt teee e reeateta et ree et et ————— 2
HOWTOS AN GUIAES. ... eeveeeeee ettt e et et e et e et e et e e e e e e e e e e e e et e e e e e e e ea e et e e e e e e e eeaeneeeraeeennaens 23
(@ L1 AT TP 2

XVi

Linux From Scratch

Gerard Beekmans — Main document

Michael Peters — Apple PowerPC additions

Copyright © 1999, 2000 by Gerard Beekmans

This book describes the process of creating your own Linux system from scratch from an already installed
Linux distribution, using nothing but the sources of software that are needed.

This book may be distributed only subject to the terms and conditions set forth in the LDP License at

http://www.linuxdoc.org/COPYRIGHT.html

It is not necessary to display the license notice, as described in the LDP License, when only a small part of
this book is quoted for informational or similar purposes. However, | do require you to display with the
guotation(s) a line similar to the following line: "Quoted from the LFS-BOOK at

http://www.linuxfromscratch.org"

Linux From Scratch

http://www.linuxdoc.org/COPYRIGHT.html
http://www.linuxfromscratch.org

Dedication

This book is dedicated to my loving and supportive wife Beverly Beekmans.

Table of Contents
Preface
Who would want to read this book
Who would not want to read this book
Organization
Part | — Introduction
Part Il — Installation of a basic system on Intel systems
Part Ill — Installation of a basic system on Apple PowerPC systems

Part IV — Appendixes
|. Part | — Introduction

1. Introduction
Introduction
How things are going to be done
Book versions
Acknowledgements
Changelog
Mailinglists and archives
Contact information
2. Important information
About $LFS
How to download the software
How to install the software
II. Part 1l — Installation of a basic system on Intel systems
3. Packages you need to download
4. Preparing a new patrtition
Introduction
Creating a new patrtition
Creating a ext?2 file system on the new partition
Mounting the new patrtition
Creating directories
Copying the /dev directory
5. Installing basic system software
How and why things are done
About debugging symbols
Preparing the LFS system for installing basic system software
Installing basic system software
Removing old NSS library files
Configuring essential software
6. Creating system boot scripts
What is being done here
Create the directories and master files
Creating the reboot script
Creating the halt script
Creating the mountfs script
Creating the umountfs script
Creating the sendsignals script

Dedication

Linux From Scratch

Creating the checkroot script
Creating the sysklogd script
Setting up symlinks and permissions
Creating the /etc/fstab file

7. Setting up basic networking
Introduction
Installing network software
Creating network boot scripts

8. Making the LFS system bootable
Introduction
Installing a kernel
Adding an entry to LILO
Testing the system

lll. Part Il — Installation of a basic system on Apple PowerPC systems

9. Packages you need to download

10. Preparing a new patrtition
Introduction
Creating a new patrtition
Mounting the new patrtition
Creating directories
Copying the /dev directory

11.Installing basic system software
How and why things are done
About debugging symbols
Preparing the LFS system for installing basic system software
Installing basic system software
Removing old NSS library files
Configuring essential software

12.Creating system boot scripts
What is being done here
Create the directories and master files
Creating the reboot script
Creating the halt script
Creating the mountfs script
Creating the umountfs script
Creating the sendsignals script
Creating the checkroot script
Creating the setclock script
Creating the sysklogd script
Setting up symlinks and permissions
Creating the /etc/fstab file

13. Setting up basic networking
Introduction
Installing network software
Creating network boot scripts

14.Making the LFS system bootable
Introduction
Installing a kernel
Updating BootX
Testing the system

IV. Part IV — Appendixes

Dedication

A. Package descriptions
Introduction

Glibc
Ed
Patch

Binutils
Bzip2
Diffutils
Linux kernel

E2fsprogs

Lilo

Make

Shellutils

Shadow Password Suite

Man

Modutils

Procinfo

Procps

Psmisc

Sed

Start—stop—daemon
B. Resources

Introduction

Books

HOWTOs and Guides

Other

Linux From Scratch

Dedication

Preface

Preface

Who would want to read this book

This book is intended for Linux users who want to learn more about the inner workings of Linux and how
the various pieces of the Operating System fit together. This book will guide you step—by-step in creating
your own custom build Linux system from scratch, using nothing but the sources of software that are needel

This book is also intended for Linux users who want to get away from the existing commercial and free
distributions that are often too bloated. Using existing distributions also forces you to use the file system
structure, boot script structure, etc. that they choose to use. With this book you can create your own structut
and methods in exactly the way you like them (which can be based on the ones this book provides)

Also, if you have security concerns, you don't want to rely on pre—compiled packages. So instead, you wan
to compile all programs yourself and install them. That could be another reason why you would want to buil
a custom made Linux system.

For those and numerous other reasons somebody might want to build his or her own Linux system from the
ground up. If you are one of those people, this book is meant for you.

Who would want to read this book 6

Who would not want to read this book

Users who don't want to build an entire Linux system from scratch probably don't want to read this book. If
you, however, do want to learn more about what happens behind the scenes, in particulair what happens
between turning on your computer and seeing the command prompt, you want to read the "From Power Up
To Bash Prompt" (P2B) HOWTO. This HOWTO builds a bare system, in a similar way as this book does, bu
it focusses more on just installing a bootable system instead of a complete system.

To decide whether you want to read this book or the P2B HOWTO, you could ask yourself this question: Is
my main objective to get a working Linux system that I'm going to build myself and along the way learn and
learn what every component of a system is for, or is just the learning part your main objective. If you want to
build and learn, read this book. If you just want to learn, then the P2B HOWTO is probably better material to
read.

The "From Power Up To Bash Prompt" HOWTO can be downloaded from
http://learning.taslug.org.au/power2bash

Who would not want to read this book 7

http://learning.taslug.org.au/power2bash

Organization

This book is devided into the following parts. Although there is a lot of duplicate information in certain
parts, it's the easiest way to read it and not to mention the easiest way for me to maintain the book.

Part | — Introduction

Part One gives you general information about this book (versions, where to get it, changelog, mailinglists
and how to get in touch with me). It also explains a few important aspects you really want and need to read
before you start building an LFS system.

Part Il — Installation of a basic system on Intel systems

Part Two guides you through the installation of a basic system on Intel systems which will be the
foundation for the rest of the system. Whatever you choose to do with your brand new LFS system, it will be
built on the foundation that's installed in this part.

Part Ill — Installation of a basic system on Apple PowerPC
systems

Part Three is the Apple PowerPC version of part two.

Part IV — Appendixes

Part Four contains various Appendixes.

Organization 8

|. Part | — Introduction

Table of Contents
1. Introduction

2. Important information

I. Part | — Introduction

Chapter 1. Introduction

Chapter 1. Introduction

10

Introduction

Having used a number of different Linux distributions, | was never fully satisfied with any of those. | didn't
like the way the bootscripts were arranged, or | didn't like the way certain programs were configured by
default and more of those things. | came to realize that when | want to be totally satisfied with a Linux
system, | have to build my own Linux system from scratch, ideally only using the source code. Not using
pre—compiled packages of any kind. No help from some sort of cdrom or bootdisk that would install some
basic utilities. You would use your current Linux system and use that one to build your own.

This, at one time, wild idea seemed very difficult and at times almost impossible. The reason for most
problems were due to my lack of knowledge about certain programs and procedures. After sorting out all
kinds of dependency problems, compilation problems, etcetera, a custom built Linux system was created an
fully operational. | called this system an LFS system, which stands for LinuxFromScratch.

Introduction 11

How things are going to be done

We are going to build the LFS system using an already installed Linux distribution such as Debian, SuSe,
Slackware, Mandrake, RedHat, etc. You don't need to have any kind of bootdisk. We will use an existing
Linux system as the base (since we need a compiler, linker, text editor and other tools).

If you don't have Linux installed yet, you won't be able to put this book to use right away. | suggest you first
install a Linux distribution. It really doesn't matter which one you install. It also doesn't need to be the latest
version, though it shouldn't be a too old one. If it is about a year old or newer it should do just fine. You will
safe yourself a lot of trouble if your normal system uses glibc-2.0 or newer. Libc5 isn't supported by this
book, though it isn't impossible to use a libc5 system if you have no choice.

There are a few sub—-LFS projects running and one of them handles installing LFS using a bootdisk. Using
the bookdisk there will be no need for an already installed Linux system. This project is still under
development and therefore it's directions not yet included in this book.

How things are going to be done 12

Book versions

This is Development version 2.3.3 dated May 29th, 2000. If this version is older than a month you definitely
want to take a look at our website and download a newer version. Development versions are released once
every two to three weeks. Stable versions are released once every one to two months.

The latest versions of this book and related files can be downloaded from one of the following sites. Please
avoid the main site at Dallas whenever possible. Thanks.

Dallas, Texas, United States — http://www.linuxfromscratch.org
Columbus, Ohio, United States — http://Ifs.bcpub.com
United States —_http://clueserver.org/Ifs

Braunschweig, Niedersachsen, Germany — http://134.169.139.209

Brisbane, Queensland, Australia_— http://Ifs.mirror.aarnet.edu.au

Book versions 13

http://www.linuxfromscratch.org
http://lfs.bcpub.com
http://clueserver.org/lfs
http://134.169.139.209
http://lfs.mirror.aarnet.edu.au

Acknowledgements

I would like to thank the following people and organizations for their contributions towards the
LinuxFromScratch project:

. Paul Jensefor providing_http://www.pcrdallas.com as the main linuxfromscratch.org host
Bryan Dummfor providing_http://www.bcpub.com as the Ifs.bcpub.com mirror
Alan Olsenfor providing_http://clueserver.org as the clueserver.org/lfs mirror
Jan Niemanrfor providing_http://helga.lk.etc.tu—bs.de as the 134.169.139.209 mirror

Jason Andradéor providing_http://mirror.aarnet.edu.au as the Ifs.mirror.aarnet.edu.au mirror

VA Linux Systemsw~vho on behalf of Linux.com donated a VA Linux 420 (formerly StartX SP2)
workstation towards this project

Acknowledgements 14

mailto:pj@pcrentals.com
http://www.pcrdallas.com
mailto:bdumm@boddy.bcpub.com
http://www.bcpub.com
mailto:alan@clueserver.org
http://cluserver.org
mailto:jan.niemann@tu-bs.de
http://helga.lk.etc.tu-bs.de
mailto:jason@dstc.edu.au
http://mirror.aarnet.edu.au
http://www.valinux.com
http://www.linux.com

Changelog

j.3.3 - May 29th, 2000

Changed the default mount point from /mnt/xxx to /mnt/Ifs (where xxx used to be the partition's
designation like hda5, sda5 and others). The reason for the change is to make cross—platform
instructions easier.

Chapter 4: Changed the default modes for the $LFS/root and $LFS/tmp directory to respectively
0750 and 1777.

Chapter 5: Removed the encoded password from the passwd file. Instead a file with no set passwor
is created. The root password can be set by the user when the system is rebooted into the LFS syst
(after chapter 8).

Chapter 5: Fixed the procps compile command for watch.c. It should compile properly now.
Chapter 5: Fixed gzip patch installation (used the wrong filename in the patch command
Chapter 5: Changed 'entering the chroot'ed environment' to make bash a login shell.

Chapter 5: Configuring the kernel has been moved to this chapter because it needs to be done befo
programs like e2fsprogs and lilo are compiled.

Chapter 6: Fixed the rc script. It now checks to see if the previous run level starts a service before
attempting to stop it in the new run level. Also, if a service is already started in the previous run level
it won't attempt to start the service in the new run level again. Thanks to Jason Pearce for providing
this fixed script.

Chapter 7: Fixed the ethnet script — removed paratheses from the environment variables and
removed the command to add a route. The ifconfig command used to bring the eth device up alread
sets this route.

j.3.2 — April 18th, 2000

Chapter 4.7: Change only the owner of the $LFS/dev/* files

Fixed a large amount of typo's that occured during the transistion from the LinuxDoc DTD (2.2 and
lower) to the DocBook DTD (2.3.1 and higher).

Changelog 15

Linux From Scratch

Moved chapters around quite a bit and applied a new structure in the book. Installations for Intel,
Apple PowerPC and future systems will be put in their own dedicated part of the book.

After the system is prepared to install the basic system software, we no longer reboot the system bl
instead we setup a chroot'ed environment. This will have the same effect without having to reboot.

Apple PowerPC has it's own dedicated chapters now. This should increase readability a lot

All optional chapters have been removed for now. These chapters are going to be restructured into
dedicated parts such as a chapter that deals with setting up LFS as an email server. A chapter that
deals with setting up LFS as a http server, and so forth. These reorganizations couldn't make this
development version in time. So you'll have to read the current stable 2.2 version of this book for
those parts.

Replaced the fixed packages by patch files. This way you can see what needs to be changed in a
package in order to get it to compile properly.

j.3.1 - April 12th, 2000

Chapter 4.4: Added the $LFS/usr/info symlink which points to $LFS/usr/share/info

Chapter 7.3.1: Added a second variation to a 'swap-line' in a fstab file.

Chapter 7.3.2: Removed $LFS from the commands.

Chapter 7.4.43: Added the vi symlink

Chapter 9.2.5: Improved ethnet script to include routing information

Chapter 10.1.2: Fixed missing subdirectory 'mqueue’ in mkdir /var/spool —> /mkdir
Ivar/spool/mqueue

Chapter 10.1.4: Updated the sendmail configuration file with a few necessary options

Chapter 10.1.7: Fixed wrong directory path /etc/init.d/rc2.d —> /etc/rc2.d

Changelog 16

Mailinglists and archives

The linuxfromscratch.org server is hosting the following three public accessible mailinglists:
Ifs—discuss
Ifs—announce

linux

lfs—discuss

The Ifs—discuss list is the list that discusses matters regarding this book. If you have problems, comments,
suggestions, etc. join this list and post your message. People on this list can take part in the newest
developments regarding this book.

lfs—announce

The Ifs—announce list is a moderated list. You can subscribe to it, but you can't post any messages to this
list. This list is used to announce new stable releases. If you want to be informed about development releast
as well then you'll have to join the Ifs—discuss list. If you're already on the Ifs—discuss list there's little use
subscribing to this list as well because everything that is posted to the Ifs—announce list will be posted to the
Ifs—discuss list as well.

linux

The linux list is a general Linux discussion list that handles everything that has got anything to do with
Linux in any way, shape and form. This list was created originally to stop the high volume of off-topic
messages to the Ifs—discuss list. Although some of the messages posted to the linux are somewhat related |
this book, the list is also used for anything else that isn't related to this book at all. Feel free to join this list if
you have non-LFS questions or just want to discuss a subject.

How to subscribe?

You can subscribe to any of the above mentioned mailinglists by sending an email to
majordomo@Ilinuxfromscratch.org and write subscribe listhame in the body of the message, where listhame
is replaced by either Ifs—discuss, Ifs—announce or linux. No subject required.

You can, if you want, subscribe to multiple lists at the same time using one email. Just repeat the subscribe
command for each of the lists you want to subscribe to.

Mailinglists and archives 17

mailto:majordomo@linuxfromscratch.org

Linux From Scratch

After you have sent the email, the Majordomo program will send you an email back requesting a
confirmation of your subscription request. After you have sent back this confirmation email, Majordomo will
send you an email again with the message that you have been subscribed to the list(s) along with an
introduction message for that particulair list.

How to unsubscribe?

To unsubscribe from a list, send an email to_majordomo@linuxfromscratch.org and write unsubscribe
listname in the body of the message, where listhame is replaced by either I[fs—discuss, Ifs—announce or linu

You can, if you want, unsubscribe from multiple lists at the same time using one email. Just repeat the
ubsubscribe command for each of the lists you want to unsubscribe from.

Mail archives

There is a mailinglist archive for the Ifs—discuss and linux mailinglists. The Ifs—discuss mailinglist archive
can be found at_http://www.pcrdallas.com/mail—archives/Ifs—discuss and the linux mailinglist archive can

be found at_http://www.pcrdallas.com/mail—archives/linux

How to unsubscribe? 18

mailto:majordomo@linuxfromscratch.org
http://www.pcrdallas.com/mail-archives/lfs-discuss
http://www.pcrdallas.com/mail-archives/linux

Contact information

Direct all your emails to the Ifs—discuss mailinglist preferably.
If you need to reach Gerard Beekmans personally, send an email to _gerard@linuxfromscratch.org

If you need to reach Michael Peters personaly, send an email to mpters@mac.com

Contact information 19

mailto:gerard@linuxfromscratch.org
mailto:mpeters@mac.com

Chapter 2. Important information

Chapter 2. Important information

20

About $LFS

Please read the following carefully: throughout this document you will frequently see the variable name
$LFS. $LFS must at all times be replaced by the directory where the partition that contains the LFS system
mounted. How to create and where to mount the partition will be explained later on in full detail in chapter 4
In my case the LFS partition is mounted on /mnt/lfs. If | read this document myself and | see $LFS
somewhere, | will pretend that | read /mnt/Ifs. If | read that | have to run this command: cp inittab $LFS/etc
actually will run this: cp inittab /mnt/Ifs/etc

It's important that you do this no matter where you read it; be it in commands you enter on the prompt, or in
some file you edit or create.

If you want, you can set the environment variable LFS. This way you can literally enter $LFS instead of
replacing it by something like /mnt/Ifs. This is accomplished by running: export LFS=/mnt/Ifs

If | read cp inittab $LFS/etc, | literally can type cp inittab $LFS/etc and the shell will replace this command
by cp inittab /mnt/Ifs/etc automatically.

Do not forget to set the $LFS variable at all times. If you haven't set the variable and you use it in a
command, $LFS will be ignored and whatever i left will be executed. The command cp inittab $LFS/etc
without the LFS variable set, will result in copying the inittab file to the /etc directory which will overwrite
your system's inittab. A file like inittab isn't that big a problem as it can easily be restored, but if you would
make this mistake during the installation of the C Library, you can break your system badly and might have
to reinstall it if you don't know how to repair it. So that's why | strongly advise against using the $LFS
variable. You better replace $LFS yourself by something like /mnt/Ifs. If you make a typo while entering
/mnt/Ifs, the worst thing that can happen is that you'll get an error saying "no such file or directory" but it
won't break your system. Don't say | didn't warn you ;)

About $LFS 21

How to download the software

Throughout this document | will assume that you have stored all the packages you have downloaded in a
subdirectory under $LFS/usr/src.

| use the convention of having a $LFS/usr/src/sources directory. Under sources you'll find the directory 0-9
and the directories a through z. A package as sysvinit—2.78.tar.gz is stored under $LFS/usr/src/sources/s/ A
package as bash—3.02.tar.gz is stored under $LFS/usr/src/sources/b/ and so forth. You don't have to follow
this convention of course, | was just giving an example. It's better to keep the packages out of $LFS/usr/sr
and move them to a subdirectory, so we'll have a clean $LFS/usr/src directory in which we will unpack the
packages and work with them.

The next chapter contains the list of all the packages you need to download, but the partition that is going te
contain our LFS system isn't created yet. Therefore store the files temporarily somewhere where you want
and remember to copy them to $LFS/usr/src/<somesubdirectory> when you have finished the chapter in
which you prepare a new partition (which chapter exactly depends on your architecture).

How to download the software 22

How to install the software

Before you can actually start doing something with a package, you need to unpack it first. Often you will
find the package files being tar'ed and gzip'ed (you can see this from a .tar.gz or .tgz extension). I'm not goil
to write down every time how to ungzip and how to untar an archive. | will tell you how to do that once, in
this paragraph. There is also the possibility that you have the ability of downloading a .tar.bz2 file. Such a f
is tar'ed and compressed with the bzip2 program. Bzip2 achieves a better compression than the commonly
used gzip does. In order to use bz2 archives you need to have the bzip2 program installed. Most if not every
distribution comes with this program so chances are high it is already installed on your system. If not, instal
it using your distribution's installation tool.

To start with, change to the $LFS/usr/src directory by running:

root:~# cd $LFS/usr/src
When you have a file that is tar'ed and gzip'ed, you unpack it by running either one of the following two
commands, depending on the filename format:

root:/usr/src# tar xvfz filename.tar.gz

root:/usr/src# tar xvfz filename.tgz
When you have a file that is tar'ed and bzip'ed, you unpack it by running:

root:/usr/src# tar ——use—compress—prog=bzip2 —xvf

filename.tar.bz2

When you have a file that is tar'ed, you unpack it by running:

root:/usr/src# tar xvf filename.tar

When the archive is unpacked a new directory will be created under the current directory (and this
document assumes that you unpack the archives under the $LFS/usr/src directory). You have to enter that
new directory before you continue with the installation instructions. So everytime the book is going to install
a program, it's up to you to unpack the source archive. I'm not going to tell you every time to unpack it.

How to install the software 23

Linux From Scratch

After you have installed a package you can do two things with it. You can either delete the directory that
contains the sources or you can keep it. If you decide to keep it, that's fine by me. But if you need the same
package again in a later chapter you need to delete the directory first before using it again. If you don't do
this, you might end up in trouble because old settings will be used (settings that apply to your normal Linux
system but which don't always apply to your LFS system). Doing a simple make clean does not always
guarantee a totally clean source tree. The configure script can also have files lying around in various
subdirectories which aren't always removed by a make clean process.

How to install the software 24

ll. Part Il — Installation of a basic system on Intel
systems

Table of Contents

3. Packages you need to download
4. Preparing a new pattition

5. Installing basic system software
6. Creating system boot scripts

7. Setting up basic networking

8. Making the LFS system bootable

II. Part Il - Installation of a basic system on Intel systems

25

Chapter 3. Packages you need to download

Below is a list of all the packages you need to download for building the basic system. The version numbers
printed correspond to versions of the software that is known to work and which this book is based on. If you
experience problems which you can't solve yourself, download the version that is assumed in this book (in
case you download a newer version).

Please note that this list used to be ordered on usage, meaning that the first package mentioned in this list

was the first package used in this book. That's no longer the case because several chapters have been moy
around, so that doens't apply. | didn't have the time to re—order this list in this development release. The ne»
release will have this list ordered again.

Sysuvinit (2.78): __ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/
Bash (2.04): __ftp://ftp.gnu.org/gnu/bash

Linux Kernel (2.2.14):__ftp://ftp.kernel.org/pub/linux/kernel/
Binutils (2.9.5.0.37): __ftp://ftp.varesearch.com/pub/support/hjl/binutils/
Bzip2 (0.9.5d): __http://sourceware.cygnus.com/bzip2/

Diff Utils (2.7): __ftp://ftp.gnu.org/gnu/diffutils/

File Utils (4.0): __ftp://ftp.anu.org/gnuffileutils/

GCC (2.95.2): __ftp://ftp.gnu.org/gnu/gcc/

Glibc (2.1.3): __ftp://ftp.gnu.org/gnu/glibc/

Glibc—crypt (2.1.3): __ftp://ftp.awdg.de/publ/linux/glibc/
Glibc-linuxthreads (2.1.3).__ftp://ftp.anu.org/gnu/glibc/

Grep (2.4.2): __ftp://ftp.gnu.org/gnu/grep/

Gzip (1.2.4a): __ftp://ftp.gnu.org/gnu/gzip/

Chapter 3. Packages you need to download 26

ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/
ftp://ftp.gnu.org/gnu/bash/
ftp://ftp.kernel.org/pub/linux/kernel/
ftp://ftp.varesearch.com/pub/support/hjl/binutils/
http://sourceware.cygnus.com/bzip2/
ftp://ftp.gnu.org/gnu/diffutils/
ftp://ftp.gnu.org/gnu/fileutils/
ftp://ftp.gnu.org/gnu/gcc/
ftp://ftp.gnu.org/gnu/glibc/
ftp://ftp.gwdg.de/pub/linux/glibc/
ftp://ftp.gnu.org/gnu/glibc/
ftp://ftp.gnu.org/gnu/grep/
ftp://ftp.gnu.org/gnu/gzip/

Linux From Scratch

Make (3.78.1): __ftp://ftp.gnu.org/gnu/make/

Ed (0.2): __ftp://ftp.gnu.org/gnu/ed/

Patch (2.5.4):__ftp://ftp.gnu.org/gnu/patch/

Sed (3.02): __ftp://ftp.gnu.org/gnu/sed/

Shell Utils (2.0): __ftp://ftp.gnu.org/gnu/sh-utils/

Tar (1.13): __ftp://ftp.gnu.org/gnu/tar/

Text Utils (2.0): __ftp://ftp.gnu.org/gnu/textutils/

Util Linux (2.10h): __ftp://ftp.win.tue.nl/pub/linux/utils/util=linux/

Bison (1.28): __ftp://ftp.gnu.org/gnu/bison/

Mawk (1.3.3) __ftp://ftp.whidbey.net/pub/brennan/

Find Utils (4.1): __ftp://ftp.gnu.org/gnu/findutils/

Termcap (1.3):__ftp://ftp.gnu.org/gnu/termcap/

Ncurses (5.0):__ftp://ftp.gnu.org/gnu/ncurses/

Less (340): __ftp:/ftp.gnu.org/gnu/less/

Perl (5.6.0): __http://www.perl.com

M4 (1.4): __ftp://ftp.gnu.org/gnu/m4/

Texinfo (4.0): __ftp://ftp.gnu.org/gnu/texinfo/

Chapter 3. Packages you need to download

27

ftp://ftp.gnu.org/gnu/make/
ftp://ftp.gnu.org/gnu/ed/
ftp://ftp.gnu.org/gnu/patch/
ftp://ftp.gnu.org/gnu/sed/
ftp://ftp.gnu.org/gnu/sh-utils/
ftp://ftp.gnu.org/gnu/tar/
ftp://ftp.gnu.org/gnu/textutils/
ftp://ftp.win.tue.nl/pub/linux/utils/util-linux/
ftp://ftp.gnu.org/gnu/bison/
ftp://ftp.whidbey.net/pub/brennan/
ftp://ftp.gnu.org/gnu/findutils/
ftp://ftp.gnu.org/gnu/termcap/
ftp://ftp.gnu.org/gnu/ncurses/
ftp://ftp.gnu.org/gnu/less/
http://www.perl.com
ftp://ftp.gnu.org/gnu/m4/
ftp://ftp.gnu.org/gnu/texinfo/

Linux From Scratch

Autoconf (2.13): __ftp://ftp.gnu.org/gnu/autoconf/

Automake (1.4): __ftp://ftp.gnu.org/gnu/automake/

Flex (2.5.4a): __ftp://ftp.gnu.org/gnu/flex/

E2fsprogs (1.18);__ftp://tsx=11.mit.edu/pub/linux/packages/ext2fs/

File (3.26): __http://www.linuxfromscratch.org/download/file—3.26-Ifs.tar.gz

Groff (1.15): __ftp://ftp.gnu.org/gnu/groff/

Ld.so (1.9.9): __ ftp://tsx=11.mit.edu/pub/linux/packages/GCC/

Libtool (1.3.4): __ftp://ftp.gnu.org/gnu/libtool/

Linux86 (0.14.3): __http://www.linuxfromscratch.org/download/linux86-0.14.3-Ifs.tar.gz

Lilo (21.4.2): __ftp://sd.dynhost.com/pub/linux/lilo

Shadow Password Suite (19990827):ftp://piast.t19.pwr.wroc.pl/pub/linux/shadow/

Man (1.5h1): __ftp:/ftp.win.tue.nl/pub/linux-local/utils/man/

Modutils (2.3.9): __ftp://ftp.ocs.com.au/pub/modutils/

Procinfo (17): __ftp://ftp.cistron.nl/pub/people/svm/

Procps (2.0.6):__ftp://people.redhat.com/johnsonm/procps/

Psmisc (19):__ftp://Ircftp.epfl.ch/publ/linux/local/psmisc/

Start—stop—daemon (0.4.1): http://www.linuxfromscratch.org/download/ssd-0.4.1.tar.gz

Chapter 3. Packages you need to download

28

ftp://ftp.gnu.org/gnu/autoconf/
ftp://ftp.gnu.org/gnu/automake/
ftp://ftp.gnu.org/gnu/flex/
ftp://tsx-11.mit.edu/pub/linux/packages/ext2fs/
http://www.linuxfromscratch.org/download/file-3.26-lfs.tar.gz
ftp://ftp.gnu.org/gnu/groff/
ftp://tsx-11.mit.edu/pub/linux/packages/GCC/
ftp://ftp.gnu.org/gnu/libtool/
http://www.linuxfromscratch.org/download/linux86-0.14.3-lfs.tar.gz
ftp://sd.dynhost.com/pub/linux/lilo
ftp://piast.t19.ds.pwr.wroc.pl/pub/linux/shadow/
ftp://ftp.win.tue.nl/pub/linux-local/utils/man/
ftp://ftp.ocs.com.au/pub/modutils/
ftp://ftp.cistron.nl/pub/people/svm/
ftp://people.redhat.com/johnsonm/procps/
ftp://lrcftp.epfl.ch/pub/linux/local/psmisc/
http://www.linuxfromscratch.org/download/ssd-0.4.1.tar.gz

Linux From Scratch

Sysklogd (1.3.31):__ftp://sunsite.unc.edu/pub/Linux/system/daemons/

Vim-rt + Vim-src (5.6): __ftp://ftp.vim.org/pub/editors/vim/unix/

Chapter 3. Packages you need to download

29

ftp://sunsite.unc.edu/pub/Linux/system/daemons/
ftp://ftp.vim.org/pub/editors/vim/unix/

Chapter 4. Preparing a new partition

Chapter 4. Preparing a new partition

30

Introduction

In this chapter the partition that is going to host the LFS system is going to be prepared. A new partition
will be created, an ext2 file system will be created on it and the directory structure will be created. When this
is done, we can move on to the next chapter and start building a new Linux system from scratch.

Introduction 31

Creating a new partition

Before we can build our new Linux system, we need to have an empty Linux partition on which we can
build our new system. | recommend a partition size of at least 5 00 MB. You can get away with around
250MB for a bare system with no extra bells and whistles (such as software for emailing, networking,
Internet, X Window System and such). If you already have a Linux Native partition available, you can skip
this subsection.

Start the fdisk program (or some other fdisk program you prefer) with the appropriate hard disk as the
option (like /dev/hda if you want to create a new partition on the primary master IDE disk). Create a Linux
Native partition, write the partition table and exit the fdisk program. If you get the message that you need to
reboot your system to ensure that that partition table is updated, then please reboot your system now before
continuing. Remember what your new partition's designation is. It could be something like hda5 (as it is in
my case). This newly created partition will be referred to as the LFS partition in this book.

Creating a new patrtition 32

Creating a ext2 file system on the new partition

Once the partition is created, we have to create a new ext2 file system on that partition. To create a new ex
file system we use the mke2fs command. Enter the new partition as the only option and the file system will
be created. If your partition was hda5, you would run:

root:~# mke2fs /dev/hda5

Creating a ext2 file system on the new partition 33

Mounting the new partition

Now that we have created the ext2 file system, it is ready for use. All we have to do to be able to access it
(as in reading from and writing date to it) is mounting it. If you mount it under /mnt/Ifs, you can access this
partition by going to the /mnt/Ifs directory and then do whatever you need to do. This document will assume
that you have mounted the partition on a subdirectory under /mnt. It doesn't matter which directory you
choose (or you can use just the /mnt directory as the mount point) but this book will assume /mnt/Ifs in the
commands it tells you to execute.

Create the /mnt/lfs directory by runnning:

root:~# mkdir —p /mnt/Ifs

Now mount the LFS partition by running:

root:~# mount /dev/xxx /mnt/Ifs

Replace "xxx" by your partition's designation.

This directory (/mnt/Ifs) is the $LFS variable you have read about earlier. So if you read somewhere to "cp
inittab $LFS/etc” you actually will type "cp inittab /mnt/Ifs/etc".

Mounting the new partition 34

Creating directories

Let's create the directory tree on the LFS patrtition according to the FHS standard which can be found at
http://www.pathname.com/fhs/. Issuing the following commands will create the necessary directories:

root:~# cd $LFS

root:Ifs# mkdir bin boot dev etc home lib mnt proc root
sbhin tmp usr var

root:Ifs# cd $LFS/usr

root:usr# mkdir bin include lib local sbin share src
root:usr# In —s share/man man

root:usr# In —s share/doc doc

root:usr# In —s share/info info

root:usr# In —s ../etc etc

root:usr# In —s ../var var

root:usr# cd $LFS/usr/share

root:share# mkdir dict doc info locale man nls misc
terminfo zoneinfo

root:share# cd $LFS/usr/share/man

root:man# mkdir manl man2 man3 man4 man5 man6 man7 man8
root:man# cd $LFS/var

root:var# mkdir lock log run spool tmp

Normally directories are created with permission mode 755, which isn't desired for all directories. | haven't
checked the FHS if they suggest default modes for certain directories, so I'll just change the modes for two
directories. The first change is a mode 0750 for the $LFS/root directory. This is to make sure that not just
everybody can enter the /root directory (the same you would do with /home/username directories). The
second change is a mode 1777 for the $LFS/tmp directory. This way every user can write stuff to the /tmp
directory if they need to. The sticky (1) bit makes sure users can't delete other user's file which they normall
can do because the directory is set in such a way that every body (owner, group, world) can write to that
directory.

root:~# cd $LFS
root:Ifs# chmod 0750 root
root:Ifs# chmod 1777 tmp

Now that the directories are created, copy the source files you have downloaded in chapter 3 to some
subdirectory under $LFS/usr/src (you will need to create this subdirectory yourself).

Creating directories 35

http://www.pathname.com/fhs/

Copying the /dev directory

We can create every single file that we need to be in the $LFS/dev directory using the mknod command, bt
that just takes up a lot of time. | choose to just simply copy the current /dev directory to the $LFS partition.
Use this command to copy the entire directory while preserving original rights, symlinks and ownerships:

root:~# cp —av /dev $LFS
root:~# chown root $LFS/dev/*

I'm aware that this isn't the best way to create the files. | know of a MAKEDEYV script but | choose not to
use it. I'm actually waiting for the 2.4 Linux kernel to be released. The kernel has a stable version of the dev
which this book will use in the future. Devfs is a dynamic file system which makes the static files in /dev
obsolete. You mount the dev file system to a mount point (kind of like the way the proc file system works)
and the kernel will create the files in /dev you need on-the—fly. So the waiting is for the next stable kernel to
be released.

Copying the /dev directory 36

Chapter 5. Installing basic system software

Chapter 5. Installing basic system software

37

How and why things are done

In this chapter we will install all the software that belongs to a basic Linux system. After you're done with
this chapter you have a fully working Linux system. The remaining chapters deal with optional issues such a
setting up networking, Internet servers + clients (telnet, ftp, http, email), setting up Internet itself and the X
Window System. You can skip chapters at your own discretion. If you don't plan on going online with the
LFS system there's little use to setup Internet for example.

This chapter is devided in two chunks. The first part installs a few necessary programs on the LFS system.
These programs are needed to install the rest of the programs that belong to a basic system. When the first
part is done, we will enter a chroot'ed environment. This means that we start a shell with $LFS as the root
directory (instead of the usual / directory as the root directory). This has the same effect as rebooting the
computer into the LFS system, but this way we don't have to reboot. If something goes wrong, you don't nee
to reboot back in the normal Linux system to fix whatever you need to fix. You just open a new shell on a
virtual console, or start a new xterm and you can do what you need to do.

The software in the first part will be linked statically. These programs will be re-installed in the second part
and linked dynamically. The reason for the static version first is that there is a chance that our normal Linux
system and our LFS system-to—be don't use the same C Library versions. If the programs in the first part ar
linked against an older C library version, those program might not work too well on the LFS system.

The key to learn what makes Linux tick is to know exactly what packages are used for and why you or the
system needs them. In depth descriptions of every package is provided in Appendix A.

How and why things are done 38

About debugging symbols

Every program and library is by default compiled with debugging symbols. This means you can run a
program or library through a debugger and the debugger's output will be more user friendly. These debuggir
symbols also enlarge the program or library significantly. This document will not install software without
debugging symbols (as | don't know if the majority of readers do or do not debug software). In stead, you ca
remove those symbols manually if you want with the strip program.

To remove debugging symbols from a binary (must be an a.out or ELF binary) run strip
——strip—debug filename You can use wild cards if you need to strip debugging symbols from
multiple files (use something like strip ——strip—debug $LFS/usr/bin/*).

Before you wonder if these debugging symbols would make a big difference, here are some statistics:

A static Bash binary with debugging symbols: 2.3MB

A static Bash binary without debugging symbols: 645KB

A dynamic Bash binary with debugging symbols: 1.2MB

A dynamic Bash binary without debugging symbols: 478KB

$LFS/lib and $LFS/usr/lib (glibc and gcc files) with debugging symbols: 87MB

$LFS/lib and $LFS/usr/lib (glibc and gcc files) without debugging symbols: 16MB
Sizes may vary depending on which compiler was used and which C library version was used to link
dynamic programs against, but your results will be similar if you compare programs with and without
debugging symbols. After | was done with this chapter and stripped all debugging symbols from all LFS

binaries and libraries | regained a little over 102 MB of disk space. Quite the difference. The difference
would be even greater when | would do this at the end of this book when everything is installed.

About debugging symbols 39

Preparing the LFS system for installing basic
system software

Installing Bash

Install Bash by running the following commands:

root:bash—2.04#
root:bash—2.04#
root:bash—2.04#
root:bash—2.04#
root:bash—2.04#

Jconfigure ——enable-static—-link
make

make —e prefix=$LFS/usr install
mv $LFS/usr/bin/bash $LFS/bin
cd $LFS/bin

root:bin# In —s bash sh

Installing Binutils

Install Binutils by running the following commands:

root:binutils-2.9.5.0.37# ./configure ——prefix=/usr
root:binutils—2.9.5.0.37# make —e LDFLAGS=-all-static
root:binutils—2.9.5.0.37a make —e prefix=$LFS/usr install

Installing Bzip2

Before we can install Bzip2 we need to modify the Makefile file. Open the Makefile file in a text

editor and find the lines that start with $(CC) $(CFLAGS) -0

Replace those parts with: $(CC) $(CFLAGS) $(LDFLAGS) -0

Now install Bzip2 by running the following commands:

root:bzip2-0.9.5d# make —e LDFLAGS=-static
root:bzip2-0.9.5d# make —e PREFIX=$LFS/usr install
root:bzip2-0.9.5d# cd $LFS/usr/bin

root:bin# mv bunzip2 bzip2 $LFS/bin

Preparing the LFS system for installing basic system software

40

Linux From Scratch

Installing Diffutils

Install Diffutils by running the following commands:

root:diffutils—2.7# ./configure ——prefix=/usr
root:diffutils—2.7# make —e LDFLAGS=-static
root:diffutils—2.7# make —e prefix=$LFS/usr install

This package is known to cause static link problems on certain platforms. If you're having trouble compiling
this package as well, you can download a patch from

http://www.linuxfromscratch.org/download/diffutils—2.7.patch.gz

Install this patch by running the following command:

root:diffutils—2.7# patch —Np1 -i ../diffutils—2.7.patch

Now recompile the package using the same commands as above.

Installing Fileutils

Install Fileutils by running the following commands:

root:fileutils—4.0# ./configure ——disable—nls ——prefix=/usr
root:fileutils—4.0# make —e LDFLAGS=-static
root:fileutils—4.0# make —e prefix=$LFS/usr install
root:fileutils—4.0# cd $LFS/usr/bin

root:bin# mv chgrp chmod chown cp dd df In $LFS/bin
root:bin# mv Is mkdir mknod mv rm rmdir sync $LFS/bin

Installing Diffutils 41

http://www.linuxfromscratch.org/download/diffutils-2.7.patch.gz

Linux From Scratch

Installing GCC on the normal system if necessary

In order to compile Glibc-2.1.3 later on you need to have gcc—-2.95.2 installed. Although any GCC version
above 2.8 would do, 2.95.2 is the highly recommended version to use. Many glibc-2.0 based systems have
gcc-2.7.2.3 installed and you can't compile glibc—2.1.3 with that compiler. Many glibc-2.1 based systems
have egcs—2.95.x installed and that version doesn't work too well either (sometimes it works fine, sometime:
it doesn't depending on various circumstances).

To find out whether your system uses gcc—2.95.2 or not, run the following command:

root:~# gcc —-version

If you normal Linux system does not have gcc—2.95.2 installed you need to install it now. We won't replace
the current compiler on your system, but instead we will install gcc in a separate directory
(/usr/local/gcc2952). This way no binaries or header files will be replaced.

After you unpacked the gcc—-2.95.2 archive don't enter the newly created gcc—-2.95.2 directory but stay in
the $LFS/usr/src directory. Install GCC by running the following commands:

root:src# mkdir $LFS/usr/src/gcc—build

root:src# cd $LFS/usr/src/gcc—build

root:gcc—build# ../gcc—2.95.2/configure
——prefix=/usr/local/gcc2952 \

> ——with—local—prefix=/usr/local/gcc2952 \

> ——with—gxx-include—dir=/usr/local/gcc2952/include/g++ \
> ——enable-shared ——enable-languages=c,c++
root:gcc—build# make bootstrap

root:gcc—build# make install

Installing GCC on the LFS system

After you unpacked the gcc—2.95.2 archive don't enter the newly created gcc—2.95.2 directory but stay in
the $LFS/usr/src directory. Install GCC by running the following commands:

root:src# mkdir $LFS/usr/src/gcc—build
root:src# cd $LFS/usr/src/gcc—build
root:gcc—build# ../gcc—-2.95.2/configure \

Installing GCC on the normal system if necessary 42

Linux From Scratch

> ——prefix=/usr ——with—-local—-prefix=/usr \

> ——with—gxx—include—dir=/usr/include/g++\

> ——enable-languages=c,c++ ——disable-nls
root:gcc—build# make —e LDFLAGS=-static bootstrap
root:gcc—build# make —e prefix=$LFS/usr
local_prefix=$LFS/usr \
gxx_include_dir=$LFS/usr/include/g++ \

> install

Creating necessary symlinks

The system needs a few symlinks to ensure every program is able to find the compiler and the
pre—processor. Some programs run the cc program, others run the gcc program. Some programs expect the
cpp program in /lib and others expect to find it in /usr/bin. Create those symlinks by running:

root:~# cd $LFS/lib

root:lib# In —s ../usr/lib/gcc—lib/<host>/2.95.2/cpp cpp
root:lib# cd $LFS/ustr/lib

root:lib# In —s gcc-lib/<host>/2.95.2/cpp cpp
root:lib# cd $LFS/usr/bin

root:bin# In -s gcc cc

Replace <host> with the directory where the gcc—2.95.2 files are installed (which is i686—unknown-linux
in my case).

Installing Glibc

A note on the glibc—crypt package
An excerpt from the README file that is distributed with the glibc—crypt package:

The add-on is not included in the main distribution of the GNU C library because some governments, most
notably those of France, Russia, and the US, have very restrictive rules governing the distribution and use o
encryption software. Please read the node "Legal Problems" in the manual for more details.

In particular, the US does not allow export of this software without a licence, including via the Internet. So
please do not download it from the main FSF FTP site at ftp.gnu.org if you are outside the US. This softwar
was completely developed outside the US.

"This software" refers to the glibc—crypt package at ftp://ftp.gwdg.de/pub/linux/glibc/. This law only affects

people who don't live in the US. It's not prohibited to import DES software, so if you live in the US you can
import the file safely from Germany without breaking cryptographic laws. This law is changing lately and |

Creating necessary symlinks 43

Linux From Scratch

don't know what the status of it is at the moment. Better be safe than sory.

Installing Glibc
Copy the Glibc—crypt and Glibc-linuxthreads archives into the unpacked glibc directory

Unpack the glibc—crypt and glibc-linuxthreads archives there, but don't enter the created directories. Just
unpack and leave it with that.

A few default parameters of Glibc need to be changed, such as the directory where the shared libraries are
supposed to be installed in and the directory that contains the system configuration files. For this purpose yc
need to create the $LFS/usr/src/glibc—build directory and in that directory you create a new file
configparms containing:

Begin configparms

slibdir=/lib
sysconfdir=/etc

End configparms

Change to the $LFS/ustr/src/glibc-build directory and install Glibc by running the following
commands if your system already had a suitable GCC version installed:

root:glibc—build# ../glibc-2.1.3/configure ——prefix=/usr
——enable—add-ons

root:libc—build# make

root:glibc—build# make install_root=$LFS install

Change to the $LFS/ustr/src/glibc-build directory and install Glibc by running the following
command if your system did not already have a suitable GCC version installed and you just installed
GCC-2.95.2 on your normal Linux system a little while ago:

root:glibc—build# CC=/usr/local/gcc2952/bin/gcc \

> ../glibc-2.1.3/configure ——prefix=/usr ——enable—add-ons
root:glibc—build# make

root:glibc—build# make install_root=$LFS install

Installing Glibc 44

Linux From Scratch

Copying old NSS library files
If your normal Linux system runs glibc-2.0, you need to copy the NSS library files to the LFS partition.

Certain statically linked programs still depend on the NSS library, especially programs that need to lookup
usernames,userid’'s and groupid's. You can check which C library version your normal Linux system uses by

running:

root:~# Is /lib/libc*

Your system uses glib—2.0 if there is a file that looks like libc-2.0.7.s0
Your system uses glibc-2.1 if there is a file that looks like libc-2.1.3.s0
Of course, the micro version number can be different (you could have libc-2.1.2 or libc-2.1.1 for example).

If you have a libc-2.0.x file copy the NSS library files by running:

root:~# cp —av /lib/libnss* $LFS/lib

There are a few distributions that don't have files from which you can see which version of the C Library it
is. If that's the case, it will be hard to determine which C library version you exactly have. Try to obtain this
information using your distribution's installation tool. It often says which version it has available. If you can't
figure out at all which C Library version is used, then copy the NSS files anyway and hope for the best.
That's the best advise | can give I'm afraid.

Installing Grep

Install Grep by running the following commands:

root:grep—2.4.2# ./configure ——prefix=/usr ——disable—nls
root:grep—2.4.2# make —e LDFLAGS=-static
root:grep—2.4.2# make —e prefix=$LFS/usr install

This package is known to cause static linking problems on certain platforms. If you're having trouble
compiling this package as well, you can download a patch from

Copying old NSS library files 45

Linux From Scratch

http://www.linuxfromscratch.org/download/grep—2.4.2.patch.gz

Install this patch by running the following command:

root:grep—2.4.2# patch —Npl -i ../grep—2.4.2.patch

Now recompile the package using the same commands as above.

Installing Gzip

Install Gzip by running the following commands:

root:gzip—1.2.4a# ./configure ——prefix=/usr
root:gzip—-1.2.4a# make —e LDFLAGS=-static
root:gzip—1.2.4a# make —e prefix=$LFS/usr install
root:gzip—1.2.4a# cd $LFS/usr/bin

root:bin# mv gunzip gzip $LFS/bin

This package is known to cause compilation problems on certain platforms. If you're having trouble
compiling this package as well, you can download a fixed package from

http://www.linuxfromscratch.org/download/gzip—1.2.4a.patch.gz

Install this patch by running the following command:

root:gzip—-1.2.4a# patch —-Npl -i../gzip—1.2.4a.patch.gz

Now recompile the package using the same commands as above.

Installing Make

Install Make by running the following commands:

Installing Gzip 46

http://www.linuxfromscratch.org/download/grep-2.4.2.patch.gz
http://www.linuxfromscratch.org/download/gzip-1.2.4a.patch.gz

Linux From Scratch

root:make—3.78.1# ./configure ——prefix=/usr ——disable-nls
root:make—-3.78.1# make —e LDFLAGS=-static
root:make-3.78.1# make —e prefix=$LFS/usr install

Installing Sed

Install Sed by running the following commands:

root:sed-3.02# ./configure ——prefix=/usr
root:sed-3.02# make —e LDFLAGS=-static
root:sed-3.02# make —e prefix=$LFS/usr install
root:sed-3.02# mv $LFS/usr/bin/sed $LFS/bin

This package is known to cause static linking problems on certain platforms. If you're having trouble
compiling this package as well, you can download a patch from

http://www.linuxfromscratch.org/download/sed—3.02.patch.gz

Install this patch by running the following command:

root:sed-3.02# patch —Npl -i ../sed-3.02.patch.gz

Now recompile the package using the same commands as above.

Installing Shellutils

Install Shellutils by running the following commands:

root:sh—utils—2.0# ./configure ——prefix=/usr ——disable—nls
root:sh—utils—2.0# make —e LDFLAGS=-static
root:sh—utils-2.0# make —e prefix=$LFS/usr install
root:sh—utils-2.0# cd $LFS/usr/bin

root:/bin# mv date echo false pwd stty $LFS/bin

root:bin# mv su true uname hostname $LFS/bin

Installing Sed 47

http://www.linuxfromscratch.org/download/sed-3.02.patch.gz

Linux From Scratch

Installing Tar

Install Tar by running the following commands:

rootitar-1.13# ./configure ——prefix=/usr ——disable-nls
root:tar—-1.13# make —e LDFLAGS=-static
root:tar-1.13# make —e prefix=$LFS/usr install
root:tar—1.13# mv $LFS/usr/bin/tar $LFS/bin

Installing Textutils

Install Textutuils by running the following commands:

root:textutils—2.0# ./configure ——prefix=/usr
root:textutils—2.0# make
root:textutils—2.0# make install
root:textutils—2.0# mv /usr/bin/cat /bin

Creating passwd and group files

Create a new file $LFS/etc/passwd containing the following:

root::0:0:root:/root:/bin/bash

Create a new file $LFS/etc/group containing the following:

root::0:

Installing Tar

48

Installing basic system software

The installation of all the software is pretty straightforward and you'll think it's so much easier and shorter
to give the generic installation instructions for each package and only explain how to install something if a
certain package requires an alternate installation method. Although | agree with you on that, I, however,
choose to give the full instructions for each and every package. This is simply to avoid any possible
confusion and errors.

Entering the chroot'ed environment

It's time to enter our chroot'ed environment now in order to install the rest of the software we need.

Enter the following commands to setup the chroot'ed environment. From this point on there's no need to us
the $LFS variable anymore, because everything you do will be restricted to the LFS patrtition (since / is
actually /mnt/xxx but the shell doesn't know that).

root:~# cd $LFS/root
root:root# chroot $LFS bash ——login

Now that we are inside a chroot'ed environment, we can continue to install all the basic system software.
Make sure you execute all the following commands in this chapter from within the chroot'ed environment.

Installing Ed

Install Ed by running the following commands:

root:/usr/src/ed—-0.2# ./configure ——prefix=/usr
root:/usr/src/ed—0.2# make
root:/usr/src/ed—0.2# make install

Installing Patch

Install Patch by running the following commands:

Installing basic system software 49

Linux From Scratch

root:patch—-2.5.4# ./configure ——prefix=/usr
root:patch-2.5.4# make
root:patch-2.5.4# make install

Installing GCC

After you unpacked the gcc—2.95.2 archive don't enter the newly created gcc—2.95.2 directory but stay in
the /usr/src directory. Install GCC by running the following commands:

root:src# mkdir /usr/src/gcc—build

root:src# cd /usr/src/gcc—build

root:.gcc—build# ../gcc—-2.95.2/configure \

> ——prefix=/usr ——with—local—prefix=/usr \

> ——with—gxx-include—dir=/usr/include/g++ \

> ——enable-shared ——enable-languages=c,c++
root:gcc—build# make bootstrap
root:gcc—build# make install

Installing Bison

Install Bison by running the following commands:

root:bison—-1.28# ./configure ——prefix=/usr
——datadir=/usr/share/bison
root:bison—-1.28# make

root:bison—-1.28# make install

Installing Mawk

Install Mawk by running the following commands:

root:mawk-1.3.3# ./configure
root:mawk-1.3.3# make
root:mawk—1.3.3# make —e BINDIR=/usr/bin

Installing GCC 50

Linux From Scratch

MANDIR=/usr/share/man/man1 install
root:mawk—-1.3.3# cd /usr/bin
root:in# In —s mawk awk

Installing Findutils

Install Findutils by running the following commands:

root:findutils—4.1# ./configure ——prefix=/usr
root:findutils—4.1# make
root:findutils—4.1# make install

This package is known to cause compilation problem. If you're having trouble compiling this package as

well, you can download a patch from _http://www.linuxfromscratch.org/download/findutils—4.1.patch.gz

Install this patch by running the following command:

root:findutils—4.1# patch —Np1 -i ../findutils—4.1.patch.gz

Now recompile the package using the same commands as above.

Installing Termcap

Install Termcap by running the following commands:

root:termcap—1.3# ./configure ——prefix=/usr
root:termcap—-1.3# make
root:termcap—1.3# make install

Installing Ncurses

Install Ncurses by running the following commands:

Installing Findutils 51

http://www.linuxfromscratch.org/download/findutils-4.1.patch.gz

Linux From Scratch

root:ncurses-5.0# ./configure ——prefix=/usr ——with—shared
root:ncurses—5.0# make
root:ncurses—5.0# make install

Installing Less

Install Less by running the following commands:

root:less—340# ./configure ——prefix=/usr
root:less—-340# make

root:less—340# make install
root:less—340# mv /usr/bin/less /bin

Installing Perl

Install Perl by running the following commands:

root:perl-5.6.0# ./Configure
root:perl—-5.6.0# make
root:perl-5.6.0# make test
root:perl-5.6.0# make install

Note that you have to change the installation path to /usr yourself. The Perl installation defaults to the
lusr/local/subdir

Also note that a few tests during the make test phase will fail because we don't have network support
installed yet.

Installing M4

Install M4 by running the following commands:

Installing Less 52

Linux From Scratch

root:m4-1.4# ./configure ——prefix=/usr
root:m4-1.4# make
root:m4-1.4# make install

Installing Texinfo

Install Texinfo by running the following commands:

root:texinfo—4.0# ./configure ——prefix=/usr
root:texinfo—4.0# make
root:texinfo—4.0# make install

Installing Autoconf

Install Autoconf by running the following commands:

root:autoconf-2.13# ./configure ——prefix=/usr
root:autoconf-2.13# make
root:autoconf-2.13# make install

Installing Automake

Install Automake by running the following commands:

root:automake—1.4# ./configure ——prefix=/usr
root:automake—1.4# make install

Installing Bash

Install Bash by running the following commands:

Installing Texinfo

53

Linux From Scratch

root:bash—2.04# ./configure ——prefix=/usr
root:bash-2.04# make

root:bash-2.04# make install
root:bash-2.04# logout

root:root# mv $LFS/usr/bin/bash $LFS/bin
root:root# chroot $LFS bash ——login

Installing Flex

Install Flex by running the following commands:

root:flex—2.5.4a# ./configure ——prefix=/usr
root:flex—2.5.4a# make
root:flex—2.5.4a# make install

Installing Binutils

Install Binutils by running the following commands:

root:binutils—2.9.5.0.37# ./configure ——prefix=/usr
root:binutils—2.9.5.0.37# make
root:binutils-2.9.5.0.37# make install

Installing Bzip2

Install Bzip2 by running the following commands:

root:bzip2-0.9.5d# make
root:bzip2-0.9.5d# make PREFIX=/usr install
root:bzip2-0.9.5d# cd /usr/bin

root:bin# mv bunzip2 bzip2 /bin

Installing Flex

54

Linux From Scratch

Installing Diffutils

Install Diffutils by running the following commands:

root:diffutils—2.7# ./configure ——prefix=/usr
root:diffutils—2.7# make
root:diffutils—2.7# make install

Installing Linux Kernel

We won't be compiling a new kernel image yet. We'll do that after we have finished the installation of the
basic system software in this chapter. But because certain software need the kernel header files, we're goin
to unpack the kernel archive now and set it up so that we can compile package that need the kernel.

Create the kernel configuration file by running the following command:

root:linux# make menuconfig

You don't have to configure anything at this point yet. Exit the configuration program immediately and
when asked whether you want to save the configuration file or not, choose yes.

Now run the following commands to set up all the dependencies correctly:

root:linux# make dep

Now that that's done, we need to create the $LFS/usr/include/linux and the
$LFS/usr/include/asm symlinks. Create them by running the following commands:

root:~# cd $LFS/usr/include
root:include# In —s ../src/linux/include/linux linux
root:include# In —s ../src/linux/include/asm asm

Installing Diffutils 55

Linux From Scratch

Installing E2fsprogs

Install E2fsprogs by running the following commands:

root:e2fsprogs—1.18# ./configure ——prefix=/usr
——with—root—prefix=/

root:e2fsprogs—-1.18%# make
root:e2fsprogs—-1.18%# make install
root:e2fsprogs—-1.18# cd /usr/sbhin

root:shin# mv *e2* *fs* mklost+found /sbin

Installing File

Install File by running the following commands:

root:file—3.26# ./configure ——prefix=/usr
root:file—=3.26# make
root:file—3.26# make install

Installing Fileutils

Install Fileutils by running the following commands:

root:fileutils—4.0# ./configure ——prefix=/usr
root:fileutils—4.0# make

root:fileutils—4.0# make install

root:fileutils—4.0# cd /usr/bin

root:bin# mv chgrp chmod chown cp dd df In /bin
root:bin# mv Is mkdir mknod mv rm rmdir sync /bin

Installing E2fsprogs

56

Linux From Scratch

Installing Grep

Install Grep by running the following commands:

root::grep—2.4.2# ./configure ——prefix=/usr
root:grep—2.4.2# make
root:grep—2.4.2# make install

Installing Groff

Install Groff by running the following commands:

root:groff-1.15# ./configure ——prefix=/usr
root:groff-1.15# make
root:groff-1.15# make install

Installing Gzip

Install Gzip by running the following commands:

root:gzip—1.2.4a# ./configure ——prefix=/usr
root:gzip—1.2.4a# make
root:gzip—1.2.4a# make install
root:gzip—1.2.4a# cd /usr/bin

root:bin# mv gunzip gzip /bin

Installing Ld.so

Install Ld.so by running the following commands:

Installing Grep

57

Linux From Scratch

root:ld.s0-1.9.10# cd util

root:util# make Idd Idconfig

root:util# cp Idd /bin

root:util# cp Idconfig /shin

root:util# cd ../man

root:man# cp Idd.1 /usr/share/man/manl
root:man# cp *.8 /usr/share/man/man8
root:man# rm /usr/bin/ldd

Installing Libtool

Install Libtool by running the following commands:

root:libtool-1.3.4# ./configure ——prefix=/usr
root:libtool-1.3.4# make
root:libtool-1.3.4# make install

Installing Linux86

Install Linux86 by running the following commands:

root:linux—86# cd as

root:as# make

root:as# make install

root:as# cd ../Id

root:ld# make 1d86

root:ld# make install

root:ld# cd ../man

root:man# cp as86.11d86.1 /usr/share/man/manl

Installing Lilo

Install Lilo by running the following commands:

Installing Libtool

Linux From Scratch

root:lilo—21.4.1# make
root:lilo—21.4.1# make install

Installing Make

Install Make by running the following commands:

root:make—3.78.1# ./configure ——prefix=/usr
root:make-3.78.1# make
root:make-3.78.1# make install

Installing Shell Utils

Install Shellutils by running the following commands:

root:sh—utils—2.0# ./configure ——prefix=/usr
root:sh—utils—2.0# make
root:sh—utils—2.0# make install
root:sh—utils—2.0# cd /usr/bin

root:bin# mv date echo false pwd stty /bin
root:bin# mv su true uname hostname /bin

Installing Shadow Password Suite

Install the Shadow Password Suite by running the following commands:

root:shadow-19990827# ./configure ——prefix=/usr
root:shadow—-19990827# make
root:shadow—-19990827# make install
root:shadow—-19990827# cd etc

root:etc# cp limits login.access login.defs.linux shells
suauth /etc

root:etc# mv /etc/login.defs.linux /etc/login.defs

Installing Make

59

Linux From Scratch

Installing Man

Install Man by running the following commands:

root:man-1.5h1# ./configure —default
root:man-1.5h1# make
root:man-1.5h1# make install

Installing Modutils

Install Modutils by running the following commands:

root:modutils—2.3.9# ./configure
root:modutils—2.3.9% make
root:modutils—2.3.9%# make install

Installing Procinfo

Install Procinfo by running the following commands:

root:procinfo—17# make
root:procinfo—17# make install

Installing Procps

Install Procps by running the following commands:

root:procps—2.0.6# gcc —c watch.c

Installing Man

60

Linux From Scratch

root:procps—2.0.6# make
root:procps—2.0.6# make —e XSCPT="" install
root:procinfo—17# mv /usr/bin/kill /bin

Installing Psmisc

Install Psmisc by running the following commands:

root:psmisc-19# make
root:psmisc-19# make install

Installing Sed

Install Sed by running the following commands:

root:sed-3.02# ./configure ——prefix=/usr
root:sed-3.02# make

root:sed-3.02# make install
root:sed-3.02# mv /usr/bin/sed /bin

Installing Start—stop—daemon

Install Start—stop—daemon by running the following commands:

root:ssd—0.4.1# make
root:ssd—0.4.1# make install

Installing Sysklogd

Install Sysklogd by running the following commands:

Installing Psmisc

61

Linux From Scratch

root:sysklogd-1.3-31# make
root:sysklogd-1.3-31# make install

Installing Sysvinit

Install Sysvinit by running the following commands:

root:sysvinit-2.78# cd src
root:sysvinit-2.78# make
root:sysvinit—-2.78# make install

Installing Tar

Install Tar by running the following commands:

root:tar—1.13# ./configure ——prefix=/usr
root:tar—1.13# make

root:tar—1.13# make install
root:tar—1.13# mv /usr/bin/tar /bin

Installing Textutils

Install Textutuils by running the following commands:

root:textutils—2.0# ./configure ——prefix=/usr
root:textutils—2.0# make
root:textutils—2.0# make install
root:textutils—2.0# mv /usr/bin/cat /bin

Installing Sysvinit

62

Linux From Scratch

Installing Vim

You need to unpack both the vim-rt and vim-src packages to install Vim. Install Vim by running the

following commands:

root:.vim-5.6# ./configure ——prefix=/usr
root:vim-5.6# make

root:vim—5.6# make install
root:vim—5.6# cd /usr/bin

root:bin# In —s vim vi

Installing Util-Linux

Before we can install the package we have to edit the MCONFIG file, find and modify the following

variables as follows:

HAVE_PASSWD=yes
HAVE_SLN=yes
HAVE_TSORT=yes

Install Util-Linux by running the following commands:

root:util-linux—2.10h# groupadd —g 5 tty
root:util-linux—2.10h# ./configure
root:util-linux—2.10h# make
root:util-linux—2.10h# make install

Installing Vim

63

Removing old NSS library files

If you have copied the NSS Library files from your normal Linux system to the LFS system (because your
normal system runs glibc-2.0) it's time to remove them now by running:

root:~# rm /lib/libnss*.so.1 /lib/libnss*2.0*

Removing old NSS library files 64

Configuring essential software

Now that all software is installed, all that we need to do to get a few programs running properly is to create
their configuration files.

Configuring Glibc
We need to create the /etc/nsswitch.conf file. Although glibc should provide defaults when this file is
missing or corrupt, it's defaults don't work work well with networking which will be dealt with in a later

chapter. Also, our timezone needs to be setup.

Create a new file /etc/nsswitch.conf containing:

Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files
netgroup: db files
End /etc/nsswitch.conf
Run the tzselect script and answer the questions regarding your timezone. When you're done, the script

will give you the location of the timezone file you need.

Create the /etc/localtime symlink by running:

root:~# cd /etc

root:etc# rm localtime

root:etc# In —s ../usr/share/zoneinfo/<tzselect's output>\
> |ocaltime

Configuring essential software 65

Linux From Scratch

tzselect's output can be something like EST5EDT or Canada/Eastern. The symlink you would create with
that information would be In —s ../usr/share/zoneinfo/EST5EDT localtime or In —s
..lusr/share/zoneinfo/Canada/Eastern localtime

Configuring Dynamic Loader

By default the dynamic loader searches a few default paths for dynamic libraries, so there normally isn't a
need for the /etc/ld.so.conf file unless you have extra directories in which you want the system to

search for paths. The /usr/local/lib directory isn't searched through for dynamic libraries by default,

so we want to add this path so when you install software you won't be suprised by them not running for som
reason.

Create a new file /etc/ld.so.conf containing the following:

Begin /etc/ld.so.conf
/lib

fusr/lib
lusr/local/lib

End /etc/ld.so.conf

Although it's not necessary to add the /lib and /usr/lib directories it doesn't hurt. This way you see
right away what's being searched and don't have to remeber the default search paths if you don't want to.

Configuring Lilo

We're not going to create lilo's configuration file from scratch, but we'll use the file from your normal Linux
system. This file is different on every machine and thus | can't create it here. Since you would want to have
the same options regarding lilo as you have when you're using your normal Linux system you would create
the file exactly as it is on the normal system.

Copy the Lilo configuration file and kernel images that Lilo uses by running the following commands from
a shell on your normal Linux system. Don't execute these commands from your chroot'ed shell.

root:~# cp /etc/lilo.conf $LFS/etc
root:~# cp /boot/* $LFS/boot

If your normal Linux system does not have (all of) it's kernel images in /boot, then check your /etc/lilo.conf
file for the location of those files and copy those as well to the location where /etc/lilo.conf expects them to

Configuring Dynamic Loader 66

Linux From Scratch

be. Or you can copy them to /boot regardless and modify the /etc/lilo.conf file so it contains the new paths fc
the images as you have them on the LFS system. Either way works fine, it's up to you how you want to do it

Configuring Sysklogd

Create the /etc/syslog.conf file containing the following:

Begin /etc/syslog.conf

auth,authpriv.* —/var/log/auth.log

* *.auth,authpriv.none —/var/log/sys.log
daemon.* —/var/log/daemon.log

kern.* —/var/log/kern.log

mail.* —/var/log/mail.log

user.* —/var/log/user.log

*.emerg *

End /etc/syslog.conf

Configuring Shadow Password Suite

This package contains the utilities to modify user's passwords, add new users/groups, delete users/groups
and more. I'm not going to explain to you what 'password shadowing' means. You can read all about that in
the doc/HOWTO file. There's one thing you should keep in mind, if you decide to use shadow support, that
programs that need to verify passwords (examples are xdm, ftp daemons, pop3 daemons, etc) need to be
‘'shadow-compliant’, eg. they need to be able to work with shadowed passwords.

If you decide you don't want to use shadowed passwords (after you're read the doc/HOWTO document),
you still use this archive since the utilities in this archive are also used on system which have shadowed
passwords disabled. You can read all about this in the HOWTO. Also note that you can switch between
shadow and non-shadow at any point you want.

Now is a very good moment to read chapter 5 of the doc/HOWTO file. You can read how you can test if
shadowing works and if not, how to disable it. If it doesn't work and you haven't tested it, you'll end up with
an unusable system after you logout of all your consoles, since you won't be able to login anymore. You car
easily fix this by passing the init=/sbin/sulogin parameter to the kernel, unpack the util-linux archive, go to
the login—utils directory, build the login program and replace the /bin/login by the one in the util-linux
package. Things are never hopelessly messed up (at least not under Linux), but you can avoid a hassle by
testing properly and reading manuals ;)

Configuring Sysklogd 67

Linux From Scratch

Configuring Sysvinit

Create a new file /etc/inittab containing the following:

Begin /etc/inittab
id:2:initdefault:
si::sysinit:/etc/init.d/rcS
su:S:wait:/sbin/sulogin

[0:0:wait:/etc/init.d/rc O
[1:1:wait:/etc/init.d/rc 1
[2:2:wait:/etc/init.d/rc 2
13:3:wait:/etc/init.d/rc 3
14:4:wait:/etc/init.d/rc 4
[5:5:wait:/etc/init.d/rc 5
16:6:wait:/etc/init.d/rc 6

ft:6:respawn:/sbin/sulogin
ca:12345:ctrlaltdel:/sbin/shutdown —t1 —a —r now

1:2345:respawn:/shin/agetty /dev/ttyl 9600
2:2345:respawn:/sbin/agetty /dev/tty2 9600
3:2345:respawn:/sbin/agetty /dev/tty3 9600
4:2345:respawn:/sbin/agetty /dev/tty4 9600
5:2345:respawn:/sbin/agetty /dev/tty5 9600
6:2345:respawn:/sbin/agetty /dev/tty6 9600

End /etc/inittab

Creating the /var/run/utmp file
Programs like login, shutdown, uptime and others want to read from and write to the /var/run/utmp file.
This file contains information about who is currently logged in. It also contains information on when the

computer was last booted and shutdown.

Create the /var/run/utmp and give it the proper permissions by running the following commands:

Configuring Sysvinit 68

Linux From Scratch

root:~# touch /var/run/utmp
root:~# chmod 644 /var/run/utmp

Configuring Vim

By default Vim runs in vi compatible mode. Some people might like this, but | have a high preference to
run vim in vim mode (else | wouldn't have included Vim in this book but the original Vi). Create the
/root/.vimrc containing the following:

set nocompatible
set bs=2

Configuring Vim 69

Chapter 6. Creating system boot scripts

Chapter 6. Creating system boot scripts

70

What is being done here

This chapter will create the necessary scripts that are run at boottime. These scripts perform tasks such as
remounting the root file system mounted read—only by the kernel into read—write mode, activiating the swap

partition(s), running a check on the root file system to make sure it's intact and starting the daemons that the
system uses.

What is being done here 71

Create the directories and master files

We need to start by creating a few extra directories that are used by the boot scripts. Create these directori
by running:

root:~# cd /etc
root:etc# mkdir rcO.d rcl.d rc2.d rc3.d
root:etc# mkdir rc4.d rc5.d rc6.d init.d rcS.d

The first main bootscript is the /etc/init.d/rc script. Create a new file
[etc/init.d/rc containing the following:

#!/bin/sh

Begin /etc/init.d/rc

#

By Jason Pearce - jason.pearce@linux.org
#

Un—-comment the following for debugging.
debug=echo

#

Start script or program.
#

startup() {

case "$1"in

*.sh)

$debug sh "$@"

)
$debug "$@"

esac

}

Ignore CTRL-C only in this shell, so we can interrupt subprocesses.
trap ":" INT QUIT TSTP

Set onlcr to avoid staircase effect.
stty onlcr 0>&1

Now find out what the current and what the previous runlevel are.
runlevel=$RUNLEVEL

Create the directories and master files 72

Linux From Scratch

Get first argument. Set new runlevel to this argument.

["$1"1=""] && runlevel=$1

if ["$runlevel" =""]

then

echo "Usage: $0 <runlevel>" >&2
exit 1

fi

previous=$PREVLEVEL
["$previous" ="'] && previous=N

export runlevel previous
Is there an rc directory for this new runlevel?

if [—d /etc/rc$runlevel.d]

then

First, run the KILL scripts for this runlevel.
if [$previous =N]

then

for i in /etc/rc$runlevel.d/K*

do

[!-f$i] && continue

suffix=${i#/etc/rc$runlevel.d/K[0-9][0-9]}
previous_start=/etc/rc$previous.d/S[0-9][0-9]$suffix

Stop the service if there is a start script
in the previous run level.
[! —f $previous_start | && continue

startup $i stop
done
fi

Now run the START scripts for this runlevel.
for i in /etc/rc$runlevel.d/S*

do

[!—f$i] && continue

if [$previous =N]

then

Find start script in previous runlevel and

stop script in this runlevel.
suffix=${i#/etc/rc$runlevel.d/S[0-9][0-9]}
stop=/etc/rc$runlevel.d/K[0-9][0-9]$suffix
previous_start=/etc/rc$previous.d/S[0-9][0-9]$suffix

If there is a start script in the previous
level

Create the directories and master files

73

Linux From Scratch

and _no_ stop script in this level, we don't

have to re—start the service.

[-f $previous_start] && [! —f $stop] && continue
fi

case "$runlevel" in
0|6)
startup $i stop

*)
startup $i start

esac
done
fi

End /etc/init.d/rc

The second main bootscript is the rcS script. Create a new file /etc/init.d/rcS containing the
following:

#!/bin/sh
Begin /etc/init.d/rcS

runlevel=S

previevel=N

umask 022

export runlevel previevel

trap ":" INT QUIT TSTP

foriin /etc/rcS.d/S??*
do

[!-f "$i"] && continue;
$i start

done

End /etc/init.d/rcS

Create the directories and master files

Creating the reboot script

Create a new file /etc/init.d/reboot containing the following:

#!/bin/sh
Begin /etc/init.d/reboot

echo "System reboot in progress..."
/sbin/reboot —d —f —i

End /etc/init.d/reboot

Creating the reboot script

75

Creating the halt script

Create a new file /etc/init.d/halt containing the following:

#!/bin/sh
Begin /etc/init.d/halt

/sbin/halt —d —f —i —p

End /etc/init.d/halt

Creating the halt script

76

Creating the mountfs script

Create a new file /etc/init.d/mountfs containing the following:

#!/bin/sh
Begin /etc/init.d/mountfs

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

echo —n "Remounting root file system in read—-write mode..."

/bin/mount —n —o remount,rw /
check_status

echo > /etc/mtab
/bin/mount —f —o remount,rw /

echo —n "Mounting proc file system..."
/bin/mount proc
check_status

End /etc/init.d/mountfs

Creating the mountfs script

77

Creating the umountfs script

Create a new file /etc/init.d/umountfs containing the following:

#!/bin/sh
Begin /etc/init.d/umountfs

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

echo —n "Deactivating swap..."
/sbin/swapoff —a
check_status

echo —n "Unmounting file systems..."
/binfumount —a -r
check_status

End /etc/init.d/umountfs

Creating the umountfs script

Creating the sendsignals script

Create a new file /etc/init.d/sendsignals containing the following:

#!/bin/sh
Begin /etc/init.d/sendsignals

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

echo —n "Sending all processes the TERM signal..."
/sbin/killall5 —15
check_status

echo —n "Sending all processes the KILL signal..."
/sbin/killall5 -9
check_status

End /etc/init.d/sendsignals

Creating the sendsignals script

Creating the checkroot script

Create a new file /etc/init.d/checkroot containing the following:

#!/bin/sh
Begin /etc/init.d/checkroot

echo —n "Activating swap..."
/sbin/swapon —a

if [—f /fastboot]
then
echo "Fast boot, no file system check"

/bin/mount —n —o remount,ro /
if[$?7=0]
then

if [—f /forcecheck]
then

force="-f"
else

echo "Checking root file system..."
Isbin/fsck $force —a /

if[$? —gt 1]
then
echo
echo "fsck failed. Please repair your file system manually by"
echo "running /sbin/fsck without the —a option"
echo
echo "Please note that the file system is currently mounted in"
echo "read-only mode."
echo

echo "l will start sulogin now. CTRL+D will reboot your system."

echo
/sbin/sulogin
/sbin/reboot —f
fi
else

echo "Cannot check root file system because it is not mounted in"

echo "read—only mode."
fi
fi

Creating the checkroot script

80

End /etc/init.d/checkroot

Linux From Scratch

Creating the checkroot script

81

Creating the sysklogd script

Create a new file /etc/init.d/sysklogd containing the following:

#!/bin/sh
Begin /etc/init.d/sysklogd

check_status()
{
if[$?7=0]
then

echo "OK"
else

echo "FAILED"
fi

}

case "$1"in
start)
echo —n "Starting system log daemon..."
start-stop—daemon -S —q -0 —x /usr/sbin/syslogd —— -m 0
check_status

echo —n "Starting kernel log daemon..."
start—stop—daemon -S —g —o —x /usr/sbin/klogd
check_status

stop)
echo —n "Stopping kernel log daemon..."
start—stop—daemon -K —gq —o —p /var/run/klogd.pid
check_status

echo —n "Stopping system log daemon..."

start—stop—daemon -K —q —o —p /var/run/syslogd.pid
check_status

reload)

echo —n "Reloading system load daemon configuration file..."

start-stop—daemon -K —q -0 -s 1 —p /var/run/syslogd.pid
check_status

restart)
echo —n "Stopping kernel log daemon..."
start—stop—daemon -K —g —o —p /var/run/klogd.pid

Creating the sysklogd script

82

Linux From Scratch

check_status

echo —n "Stopping system log daemon..."
start—stop—daemon -K —q —o —p /var/run/syslogd.pid
check_status

sleep 1

echo —n "Starting system log daemon..."
start-stop—daemon -S —q -0 —x /usr/sbin/syslogd —— -m 0
check_status

echo —n "Starting kernel log daemon..."

start—stop—daemon -S —g —o —x /usr/sbin/klogd
check_status

*)
echo "Usage: $0 {start|stop|reload|restart}"
exit 1
esac

End /etc/init.d/sysklogd

Creating the sysklogd script

Setting up symlinks and permissions

root:~# cd /etc/init.d

root:init.d#
root:init.d#
root:init.d#
root:rcO.d#
root:rcO.d#
root:rcO.d#
root:rcO.d#
root:rcO.d#
root:rc6.d#
root:rc6.d#
root:rc6.d#
root:rc6.d#
root:rc6.d#
root:rcS.d#
root:rcS.d#
root:rcS.d#
root:rc2.d#

chmod 755 rcS reboot halt mountfs umountfs
chmod 755 sendsignals checkroot sysklogd

cd ../rc0.d

In —s ../init.d/sysklogd K90sysklogd

In —s ../init.d/sendsignals S80sendsignals
In —=s ../init.d/umountfs S90umountfs

In —s ../init.d/halt S99halt

cd ../rc6.d

In —s ../init.d/sysklogd K90sysklogd

In —s ../init.d/sendsignals S80sendsignals
In —s ../init.d/umountfs S90umountfs

In —s ../init.d/reboot S99reboot

cd ../rcS.d

In —s ../init.d/checkroot SO5checkroot

In —=s ../init.d/mountfs S10mountfs

cd /etc/rc2.d

In —s ../init.d/sysklogd S03sysklogd

Give these files the proper permissions and create the necessary symlinks by running the following
commands:

Setting up symlinks and permissions

84

Creating the /etc/fstab file

In order for certain programs to be able to determine where certain partitions are supposed to be mounted |
default, the /etc/fstab file is used. Create a new file /etc/fstab containing the following:

Begin /etc/fstab

/dev/<LFS—partition designation> / ext2 defaults 0 1
/dev/<swap—partition designation> none swap sw 00
proc /proc proc defaults 0 0

End /etc/fstab

Replace <LFS—partition designation> and <swap-—partition designation> with the appropriate devices
(/dev/hda5 and /dev/hda6 in my case).

Creating the /etc/fstab file 85

Chapter 7. Setting up basic networking

Chapter 7. Setting up basic networking

86

Introduction

This chapter will setup basic networking. Although you might not be connected to a network, Linux
software uses network functions anyway. We'll be installing at least the local loopback device and a network
card as well if applicable. Also the proper bootscripts will be created so that networking will be enabled

during boot time.

Introduction 87

Installing network software

Installing Netkit—base

Install Netkit—base by running the following commands:

root:netkit—-base-0.17...
root:netkit—base-0.17..
root:netkit—-base-0.17...
root:netkit—-base-0.17...
root:netkit—base-0.17..

letc

#
H#
#
#

Jconfigure ——prefix=/usr
make

make install

cd etc.sample

Jetc.sample# cp services protocols

Installing Net—tools

Install Net-tools by running the following commands:

root:net—tools—1.54# make
root:net—tools—1.54# make install

Installing network software

88

Creating network boot scripts

Creating the /etc/init.d/localnet bootscript

Create a new file /etc/init.d/localnet containing the following:

#!/bin/sh
Begin /etc/init.d/localnet

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi
}
echo —n "Setting up loopback device..."
[sbin/ifconfig lo 127.0.0.1
check_status

echo —n "Setting up hostname..."
/binfhostname ——file /etc/hostname
check_status

End /etc/init.d/localnet

Setting up permissions and symlink

Set the proper file permissions and create the necessary symlink by running the following commands:

root:~# cd /etc/init.d

root:init.d# chmod 755 /etc/init.d/localnet
root:init.d# cd ../rcS.d

root:rcS.d# In —s ../init.d/localnet SO3localnet

Creating network boot scripts 89

Linux From Scratch

Creating the /etc/hostname file

Create a new file /etc/hostname and put the hostname in it. This is not the FQDN (Fully Qualified
Domain Name). This is the name you wish to call your computer in a network. An example:

Ifs

The file must not contain empty lines or spaces after the hostname. Don't press enter either when you
entered the name.

Creating the /etc/hosts file

If you want to configure a network card, you have to decide on the IP-address, FQDN and possible aliases
for use in the /etc/hosts file. An example is:

<my-IP> myhost.mydomain.org aliases

Make sure the IP—address is in the private network IP—-address range. Valid ranges are:

Class Networks
A 10.0.0.0
B 172.16.0.0 through 172.31.0.0
C 192.168.0.0 through 192.168.255.0
A valid IP address could be 192.168.1.1. A valid FQDN for this IP could be www.linuxfromscratch.org

If you're not going to use a network card, you still need to come up with a FQDN. This is necessary for
programs like Sendmail to operate correctly (in fact; Sendmail won't run when it can't determine the FQDN).

If you don't configure a network card, create a new file /etc/hosts containing:

Begin /etc/hosts (no network card version)

Creating the /etc/hostname file 90

Linux From Scratch

127.0.0.1 www.linuxfromscratch.org <contents of /etc/hostname> localhost

End /etc/hosts (no network card version)

If you do configure a network card, create a new file /etc/hosts containing:

Begin /etc/hosts (network card version)

127.0.0.1 localhost
192.168.1.1 www.linuxfromscratch.org <contents of /etc/hostname>

End /etc/hosts (network card version)

Of course, change the 192.168.1.1 and www.linuxfromscratch.org to your own liking (or requirements if

you are assigned an IP-address by a network/system administrator and you plan on connecting this machir
to that network).

Creating the /etc/init.d/ethnet file

This section only applies if you are going to configure a network card. If you're not, skip this section.

Create a new file /etc/init.d/ethnet containing the following:

#1/bin/sh
Begin /etc/init.d/ethnet

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

IPADDR="209.83.245.12" # Replace with your own IP address
NETMAKSK="255.255.255.0" # Replace with your own Netmask
BROADCAST="209.83.245.255" # Replace with your own Broadcast addr.
GATEWAY="209.83.245.1" # Replace with your own Gateway address

Creating the /etc/init.d/ethnet file 91

Linux From Scratch

echo —n "Setting up ethO0..."
/sbin/ifconfig ethO $IPADDR broadcast $BROADCAST netmask $NETMASK
check_status

echo "Adding default gateway..."
/sbin/route add default gw $GATEWAY metric 1
check_status

End /etc/init.d/ethnet

Setting up permissions and symlink

Set the proper file permissions and create the necessary symlink by running the following commands:

root:~# cd /etc/init.d

root:init.d# chmod 755 /etc/init.d/ethnet
root:init.d# cd ../rc2.d

root:rc2.d# In —s ../init.d/ethnet S10ethnet

Setting up permissions and symlink 92

Chapter 8. Making the LFS system bootable

Chapter 8. Making the LFS system bootable

93

Introduction

This chapter will make LFS bootable. This chapter deals with building a new kernel for our new LFS
system and adding the proper entries to LILO so that you can select to boot the LFS system at the LILO:
prompt.

Introduction 94

Installing a kernel

A kernel is the heart of a Linux system. We could use the kernel image from our normal system, but we
might as well compile a new kernel from the most recent kernel sources available.

Building the kernel involves a few steps: configuring it and compiling it. There are a few ways to configure
the kernel. If you don't like the way this book does it, read the README file and find out what your other
options are. Run the following commands to build the kernel:

root:linux# make mrproper

root:linux# make menuconfig

root:linux# make dep

root:linux# make bzlmage

root:linux# cp arch/i386/boot/bzimage /boot/lfskernel
root:linux# cp System.map /boot

Installing a kernel 95

Adding an entry to LILO

In order to being able to boot from this partition, we need to update our /etc/lilo.conf file. Add the following
lines to lilo.conf:

image=/boot/Ifskernel
label=Ifs
root=<partition>
read-only

<partition> must be replaced by your partition's designation (which would be /dev/hda5 in my case).

Now update the boot loader by running:

root:~# lilo

Adding an entry to LILO 96

Testing the system

Now that all software has been installed, bootscripts have been written and the local network is setup, it's
time for you to reboot your computer and test these new scripts to verify that they actually work. You first
want to execute them manually from the /etc/init.d directory so you can fix the most obvious problems
(typos, wrong paths and such). When those scripts seem to work just fine manually they should also work
during a system start or shutdown. There's only one way to test that. Shutdown your system with shutdown
now and reboot into LFS. After the reboot you will have a normal login prompt like you have on your normal
Linux system (unless you use XDM or some sort of other Display Manger (like KDM - KDE's version of
XDM).

When you are at the login prompt, login as user root and when asked for a password just press enter. The
first thing you want to do is set a password for user root by running the following command:

:root:~# passwd

At this point your basic LFS system is ready for use. Everything else that follows now is optional, so you
can skip packages at your own discretion. But do keepein mind that if you skip packages (especially librarie
you can break dependencies of other packages. For example, when the Lynx browser is installed, the zlib
library is installed as well. You can decide to skip the zlib library, but this library isn't used by Lynx alone.
Other packages require this library too. The same may apply to other libraries and programs.

Testing the system 97

lll. Part Il — Installation of a basic system on Apple
PowerPC systems

Table of Contents

9. Packages you need to download
10. Preparing a new patrtition
11.Installing basic system software
12.Creating system boot scripts

13. Setting up basic networking
14.Making the LFS system bootable

lll. Part Il - Installation of a basic system on Apple PowerPC systems

98

Chapter 9. Packages you need to download

Below is a list of all the packages you need to download for building the basic system. The version numbers
printed correspond to versions of the software that is known to work and which this book is based on. If you
experience problems which you can't solve yourself, download the version that is assumed in this book (in
case you download a newer version).

Please note that this list used to be ordered on usage, meaning that the first package mentioned in this list

was the first package used in this book. That's no longer the case because several chapters have been moy
around, so that doens't apply. | didn't have the time to re—order this list in this development release. The ne»
release will have this list ordered again.

Sysuvinit (2.78): __ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/
Bash (2.04): __ftp://ftp.gnu.org/gnu/bash

Linux Kernel (2.2.14):__ftp://ftp.kernel.org/pub/linux/kernel/

Kernel USB patch:__216.22.163.20/usb-2.3.50-1-for=2.2.14 diff.gz
Binutils (2.9.5.0.37): __ftp://ftp.varesearch.com/pub/support/hjl/binutils/
Bzip2 (0.9.5d): __http://sourceware.cygnus.com/bzip2/

Diff Utils (2.7): __ftp://ftp.gnu.org/gnu/diffutils/

File Utils (4.0): __ftp://ftp.anu.org/gnuffileutils/

GCC (2.95.2): __ftp://ftp.gnu.org/gnu/gcc/

Glibc (2.1.3): __ftp://ftp.gnu.org/gnu/glibc/

Glibc—crypt (2.1.3): __ftp://ftp.awdg.de/publ/linux/glibc/
Glibc-linuxthreads (2.1.3).__ftp://ftp.anu.org/gnu/glibc/

Glibc—patch: __ftp://216.22.163.20/glibc—2.1.3-ctype.patch

Chapter 9. Packages you need to download 99

ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/
ftp://ftp.gnu.org/gnu/bash/
ftp://ftp.kernel.org/pub/linux/kernel/
usb-2.3.50-1-for-2.2.14.diff.gz
ftp://ftp.varesearch.com/pub/support/hjl/binutils/
http://sourceware.cygnus.com/bzip2/
ftp://ftp.gnu.org/gnu/diffutils/
ftp://ftp.gnu.org/gnu/fileutils/
ftp://ftp.gnu.org/gnu/gcc/
ftp://ftp.gnu.org/gnu/glibc/
ftp://ftp.gwdg.de/pub/linux/glibc/
ftp://ftp.gnu.org/gnu/glibc/
ftp://216.22.163.20/glibc-2.1.3-ctype.patch

Linux From Scratch

Grep (2.4.2): __ftp://ftp.gnu.org/gnu/grep/

Gzip (1.2.4a): __ftp://ftp.gnu.org/gnu/gzip/

Make (3.78.1): __ftp://ftp.gnu.org/gnu/make/

Ed (0.2): __ftp://ftp.gnu.org/gnu/ed/

Patch (2.5.4):__ftp://ftp.gnu.org/gnu/patch/

Sed (3.02): __ftp://ftp.gnu.org/gnu/sed/

Shell Utils (2.0): __ftp:/ftp.gnu.org/gnu/sh-utils/

Tar (1.13): __ftp://ftp.gnu.org/gnu/tar/

Text Utils (2.0): __ftp://ftp.gnu.org/gnu/textutils/

Util Linux (2.10h): __ftp://ftp.win.tue.nl/pub/linux/utils/util=linux/

Pmac Utils((1.1.1):__ftp://216.22.163.20/pmac—utils—1.1.1-patched.tar.gz

Bison (1.28): __ftp://ftp.gnu.org/gnu/bison/

Mawk (1.3.3) __ftp://ftp.whidbey.net/pub/brennan/

Find Utils (4.1): __ftp://ftp.gnu.org/gnu/findutils/

Termcap (1.3):__ftp://ftp.gnu.org/gnu/termcap/

Ncurses (4.2).__ftp://ftp.gnu.org/gnu/ncurses/

Less (340): __ftp:/ftp.gnu.org/gnu/less/

Chapter 9. Packages you need to download 100

ftp://ftp.gnu.org/gnu/grep/
ftp://ftp.gnu.org/gnu/gzip/
ftp://ftp.gnu.org/gnu/make/
ftp://ftp.gnu.org/gnu/ed/
ftp://ftp.gnu.org/gnu/patch/
ftp://ftp.gnu.org/gnu/sed/
ftp://ftp.gnu.org/gnu/sh-utils/
ftp://ftp.gnu.org/gnu/tar/
ftp://ftp.gnu.org/gnu/textutils/
ftp://ftp.win.tue.nl/pub/linux/utils/util-linux/
ftp://216.22.163.20/pmac-utils-1.1.1-patched.tar.gz
ftp://ftp.gnu.org/gnu/bison/
ftp://ftp.whidbey.net/pub/brennan/
ftp://ftp.gnu.org/gnu/findutils/
ftp://ftp.gnu.org/gnu/termcap/
ftp://ftp.gnu.org/gnu/ncurses/
ftp://ftp.gnu.org/gnu/less/

Linux From Scratch

Perl (5.6.0): __http://www.perl.com

M4 (1.4): __ftp://ftp.gnu.org/gnu/m4/

Texinfo (4.0): __ftp://ftp.gnu.org/gnu/texinfo/

Autoconf (2.13): __ftp://ftp.gnu.org/gnu/autoconf/

Automake (1.4): __ftp://ftp.gnu.org/gnu/automake/

Flex (2.5.4a): __ftp://ftp.gnu.org/gnu/flex/

E2fsprogs (1.18);__ftp://tsx=11.mit.edu/pub/linux/packages/ext2fs/

File (3.26): __http://www.linuxfromscratch.org/download/file—3.26-Ifs.tar.gz

Groff (1.15): __ftp://ftp.gnu.org/gnu/groff/

Ld.so (1.9.9): _ ftp://tsx=11.mit.edu/pub/linux/packages/GCC/

Libtool (1.3.4): __ftp://ftp.gnu.org/gnu/libtool/

Linux86 (0.14.3): __http://www.linuxfromscratch.org/download/linux86-0.14.3-Ifs.tar.gz

Shadow Password Suite (19990827):ftp://piast.t19.pwr.wroc.pl/pub/linux/shadow/

Man (1.5h1): __ftp:/ftp.win.tue.nl/pub/linux-local/utils/man/

Modutils (2.3.9): __ftp://ftp.ocs.com.au/pub/modutils/

Procinfo (17): __ftp://ftp.cistron.nl/pub/people/svm/

Procps (2.0.6):__ftp://people.redhat.com/johnsonm/procps/

Chapter 9. Packages you need to download 101

http://www.perl.com
ftp://ftp.gnu.org/gnu/m4/
ftp://ftp.gnu.org/gnu/texinfo/
ftp://ftp.gnu.org/gnu/autoconf/
ftp://ftp.gnu.org/gnu/automake/
ftp://ftp.gnu.org/gnu/flex/
ftp://tsx-11.mit.edu/pub/linux/packages/ext2fs/
http://www.linuxfromscratch.org/download/file-3.26-lfs.tar.gz
ftp://ftp.gnu.org/gnu/groff/
ftp://tsx-11.mit.edu/pub/linux/packages/GCC/
ftp://ftp.gnu.org/gnu/libtool/
http://www.linuxfromscratch.org/download/linux86-0.14.3-lfs.tar.gz
ftp://piast.t19.ds.pwr.wroc.pl/pub/linux/shadow/
ftp://ftp.win.tue.nl/pub/linux-local/utils/man/
ftp://ftp.ocs.com.au/pub/modutils/
ftp://ftp.cistron.nl/pub/people/svm/
ftp://people.redhat.com/johnsonm/procps/

Linux From Scratch

Psmisc (19):__ftp://Ircftp.epfl.ch/publ/linux/local/psmisc/

Start—stop—daemon (0.4.1): http://www.linuxfromscratch.org/download/ssd-0.4.1.tar.gz

Sysklogd (1.3.31):__ftp://sunsite.unc.edu/pub/Linux/system/daemons/

Vim-rt + Vim-src (5.6): __ftp://ftp.vim.org/pub/editors/vim/unix/

Chapter 9. Packages you need to download 102

ftp://lrcftp.epfl.ch/pub/linux/local/psmisc/
http://www.linuxfromscratch.org/download/ssd-0.4.1.tar.gz
ftp://sunsite.unc.edu/pub/Linux/system/daemons/
ftp://ftp.vim.org/pub/editors/vim/unix/

Chapter 10. Preparing a new partition

Chapter 10. Preparing a new partition 103

Introduction

In this chapter the partition that is going to host the LFS system is going to be prepared. A new partition
will be created, an ext2 file system will be created on it and the directory structure will be created. When this
is done, we can move on to the next chapter and start building a new Linux system from scratch.

Introduction 104

Creating a new partition

Before we can build our new Linux system, we need to have an empty Linux partition on which we can
build our new system. | recommend a partition size of at least 5 00 MB. You can get away with around
250MB for a bare system with no extra bells and whistles (such as software for emailing, networking,
Internet, X Window System and such). If you already have a Linux Native partition available, you can skip
this subsection.

Start the pdisk program (or some other fdisk program you prefer) with the appropriate hard disk as the
option (like /dev/shda if you want to create a new partition on the first SCSI disk). The partition that is
available for partitioning is called Apple_Free_Space. To create a linux capable partition in that free space,
type c followed by the partition designation of the free space p<n>, the size in MB of the desired partition
<size>M and the name of the partition <name>. The example below creates a 1.8 GB partition name root
starting at the beginning of the free space designated as patrtition 6: ¢ p6 1800M root

Creating a new patrtition 105

Mounting the new partition

Now that we have created the ext2 file system, it is ready for use. All we have to do to be able to access it
(as in reading from and writing date to it) is mounting it. If you mount it under /mnt/Ifs, you can access this
partition by going to the /mnt/Ifs directory and then do whatever you need to do. This document will assume
that you have mounted the partition on a subdirectory under /mnt. It doesn't matter which directory you
choose (or you can use just the /mnt directory as the mount point) but this book will assume /mnt/Ifs in the
commands it tells you to execute.

Create the /mnt/lfs directory by runnning:

root:~# mkdir —p /mnt/Ifs

Now mount the LFS partition by running:

root:~# mount /dev/xxx /mnt/Ifs

Replace "xxx" by your partition's designation.

This directory (/mnt/Ifs) is the $LFS variable you have read about earlier. So if you read somewhere to "cp
inittab $LFS/etc” you actually will type "cp inittab /mnt/Ifs/etc".

Mounting the new partition 106

Creating directories

Let's create the directory tree on the LFS patrtition according to the FHS standard which can be found at
http://www.pathname.com/fhs/. Issuing the following commands will create the necessary directories:

root:~# cd $LFS

root:Ifs# mkdir bin boot dev etc home lib mnt proc root
sbhin tmp usr var

root:Ifs# cd $LFS/usr

root:usr# mkdir bin include lib local sbin share src
root:usr# In —s share/man man

root:usr# In —s share/doc doc

root:usr# In —s share/info info

root:usr# In —s ../etc etc

root:usr# In —s ../var var

root:usr# cd $LFS/usr/share

root:share# mkdir dict doc info locale man nls misc
terminfo zoneinfo

root:share# cd $LFS/usr/share/man

root:man# mkdir manl man2 man3 man4 man5 man6 man7 man8
root:man# cd $LFS/var

root:var# mkdir lock log run spool tmp

Normally directories are created with permission mode 755, which isn't desired for all directories. | haven't
checked the FHS if they suggest default modes for certain directories, so I'll just change the modes for two
directories. The first change is a mode 0750 for the $LFS/root directory. This is to make sure that not just
everybody can enter the /root directory (the same you would do with /home/username directories). The
second change is a mode 1777 for the $LFS/tmp directory. This way every user can write stuff to the /tmp
directory if they need to. The sticky (1) bit makes sure users can't delete other user's file which they normall
can do because the directory is set in such a way that every body (owner, group, world) can write to that
directory.

root:~# cd $LFS
root:Ifs# chmod 0750 root
root:Ifs# chmod 1777 tmp

Now that the directories are created, copy the source files you have downloaded in chapter 3 to some
subdirectory under $LFS/usr/src (you will need to create this subdirectory yourself).

Creating directories 107

http://www.pathname.com/fhs/

Copying the /dev directory

We can create every single file that we need to be in the $LFS/dev directory using the mknod command, bt
that just takes up a lot of time. | choose to just simply copy the current /dev directory to the $LFS partition.
Use this command to copy the entire directory while preserving original rights, symlinks and ownerships:

root:~# cp —av /dev $LFS
root:~# chown root $LFS/dev/*

I'm aware that this isn't the best way to create the files. | know of a MAKEDEYV script but | choose not to
use it. I'm actually waiting for the 2.4 Linux kernel to be released. The kernel has a stable version of the dev
which this book will use in the future. Devfs is a dynamic file system which makes the static files in /dev
obsolete. You mount the dev file system to a mount point (kind of like the way the proc file system works)
and the kernel will create the files in /dev you need on-the—fly. So the waiting is for the next stable kernel to
be released.

Copying the /dev directory 108

Chapter 11. Installing basic system software

Chapter 11. Installing basic system software 109

How and why things are done

In this chapter we will install all the software that belongs to a basic Linux system. After you're done with
this chapter you have a fully working Linux system. The remaining chapters deal with optional issues such a
setting up networking, Internet servers + clients (telnet, ftp, http, email), setting up Internet itself and the X
Window System. You can skip chapters at your own discretion. If you don't plan on going online with the
LFS system there's little use to setup Internet for example.

This chapter is devided in two chunks. The first part installs a few necessary programs on the LFS system.
These programs are needed to install the rest of the programs that belong to a basic system. When the first
part is done, we will enter a chroot'ed environment. This means that we start a shell with $LFS as the root
directory (instead of the usual / directory as the root directory). This has the same effect as rebooting the
computer into the LFS system, but this way we don't have to reboot. If something goes wrong, you don't nee
to reboot back in the normal Linux system to fix whatever you need to fix. You just open a new shell on a
virtual console, or start a new xterm and you can do what you need to do.

The software in the first part will be linked statically. These programs will be re-installed in the second part
and linked dynamically. The reason for the static version first is that there is a chance that our normal Linux
system and our LFS system-to—be don't use the same C Library versions. If the programs in the first part ar
linked against an older C library version, those program might not work too well on the LFS system.

The key to learn what makes Linux tick is to know exactly what packages are used for and why you or the
system needs them. In depth descriptions of every package is provided in Appendix A.

How and why things are done 110

About debugging symbols

Every program and library is by default compiled with debugging symbols. This means you can run a
program or library through a debugger and the debugger's output will be more user friendly. These debuggir
symbols also enlarge the program or library significantly. This document will not install software without
debugging symbols (as | don't know if the majority of readers do or do not debug software). In stead, you ca
remove those symbols manually if you want with the strip program.

To remove debugging symbols from a binary (must be an a.out or ELF binary) run strip
——strip—debug filename You can use wild cards if you need to strip debugging symbols from
multiple files (use something like strip ——strip—debug $LFS/usr/bin/*).

Before you wonder if these debugging symbols would make a big difference, here are some statistics:

A static Bash binary with debugging symbols: 2.3MB

A static Bash binary without debugging symbols: 645KB

A dynamic Bash binary with debugging symbols: 1.2MB

A dynamic Bash binary without debugging symbols: 478KB

$LFS/lib and $LFS/usr/lib (glibc and gcc files) with debugging symbols: 87MB

$LFS/lib and $LFS/usr/lib (glibc and gcc files) without debugging symbols: 16MB
Sizes may vary depending on which compiler was used and which C library version was used to link
dynamic programs against, but your results will be similar if you compare programs with and without
debugging symbols. After | was done with this chapter and stripped all debugging symbols from all LFS

binaries and libraries | regained a little over 102 MB of disk space. Quite the difference. The difference
would be even greater when | would do this at the end of this book when everything is installed.

About debugging symbols 111

Preparing the LFS system for installing basic
system software

Installing Bash

Install Bash by running the following commands:

root:bash—2.04#
root:bash—2.04#
root:bash—2.04#
root:bash—2.04#
root:bash—2.04#

Jconfigure ——enable-static—-link
make

make —e prefix=$LFS/usr install
mv $LFS/usr/bin/bash $LFS/bin
cd $LFS/bin

root:bin# In —s bash sh

Installing Binutils

Install Binutils by running the following commands:

root:binutils-2.9.5.0.37# ./configure ——prefix=/usr
root:binutils—2.9.5.0.37# make —e LDFLAGS=-all-static
root:binutils—2.9.5.0.37a make —e prefix=$LFS/usr install

Installing Bzip2

Before we can install Bzip2 we need to modify the Makefile file. Open the Makefile file in a text

editor and find the lines that start with $(CC) $(CFLAGS) -0

Replace those parts with: $(CC) $(CFLAGS) $(LDFLAGS) -0

Now install Bzip2 by running the following commands:

root:bzip2-0.9.5d# make —e LDFLAGS=-static
root:bzip2-0.9.5d# make —e PREFIX=$LFS/usr install
root:bzip2-0.9.5d# cd $LFS/usr/bin

root:bin# mv bunzip2 bzip2 $LFS/bin

Preparing the LFS system for installing basic system software

112

Linux From Scratch

Installing Diffutils

Install Diffutils by running the following commands:

root:diffutils—2.7# ./configure ——prefix=/usr
root:diffutils—2.7# make —e LDFLAGS=-static
root:diffutils—2.7# make —e prefix=$LFS/usr install

This package is known to cause static link problems on certain platforms. If you're having trouble compiling
this package as well, you can download a patch from

http://www.linuxfromscratch.org/download/diffutils—2.7.patch.gz

Install this patch by running the following command:

root:diffutils—2.7# patch —Np1 -i ../diffutils—2.7.patch

Now recompile the package using the same commands as above.

Installing Fileutils

Install Fileutils by running the following commands:

root:fileutils—4.0# ./configure ——disable—nls ——prefix=/usr
root:fileutils—4.0# make —e LDFLAGS=-static
root:fileutils—4.0# make —e prefix=$LFS/usr install
root:fileutils—4.0# cd $LFS/usr/bin

root:bin# mv chgrp chmod chown cp dd df In $LFS/bin
root:bin# mv Is mkdir mknod mv rm rmdir sync $LFS/bin

Installing Diffutils 113

http://www.linuxfromscratch.org/download/diffutils-2.7.patch.gz

Linux From Scratch

Installing GCC on the normal system if necessary

In order to compile Glibc-2.1.3 later on you need to have gcc—-2.95.2 installed. Although any GCC version
above 2.8 would do, 2.95.2 is the highly recommended version to use. Many glibc-2.0 based systems have
gcc-2.7.2.3 installed and you can't compile glibc—2.1.3 with that compiler. Many glibc-2.1 based systems
have egcs—2.95.x installed and that version doesn't work too well either (sometimes it works fine, sometime:
it doesn't depending on various circumstances).

To find out whether your system uses gcc—2.95.2 or not, run the following command:

root:~# gcc —-version

If you normal Linux system does not have gcc—2.95.2 installed you need to install it now. We won't replace
the current compiler on your system, but instead we will install gcc in a separate directory
(/usr/local/gcc2952). This way no binaries or header files will be replaced.

After you unpacked the gcc—-2.95.2 archive don't enter the newly created gcc—-2.95.2 directory but stay in
the $LFS/usr/src directory. Install GCC by running the following commands:

root:src# mkdir $LFS/usr/src/gcc—build

root:src# cd $LFS/usr/src/gcc—build

root:gcc—build# ../gcc—2.95.2/configure
——prefix=/usr/local/gcc2952 \

> ——with—local—prefix=/usr/local/gcc2952 \

> ——with—gxx-include—dir=/usr/local/gcc2952/include/g++ \
> ——enable-shared ——enable-languages=c,c++
root:gcc—build# make bootstrap

root:gcc—build# make install

Installing GCC on the LFS system

After you unpacked the gcc—2.95.2 archive don't enter the newly created gcc—2.95.2 directory but stay in
the $LFS/usr/src directory. Install GCC by running the following commands:

root:src# mkdir $LFS/usr/src/gcc—build
root:src# cd $LFS/usr/src/gcc—build
root:gcc—build# ../gcc—-2.95.2/configure \

Installing GCC on the normal system if necessary 114

Linux From Scratch

> ——prefix=/usr ——with—-local—-prefix=/usr \

> ——with—gxx—include—dir=/usr/include/g++\

> ——enable-languages=c,c++ ——disable-nls
root:gcc—build# make —e LDFLAGS=-static bootstrap
root:gcc—build# make —e prefix=$LFS/usr
local_prefix=$LFS/usr \
gxx_include_dir=$LFS/usr/include/g++ \

> install

Creating necessary symlinks

The system needs a few symlinks to ensure every program is able to find the compiler and the
pre—processor. Some programs run the cc program, others run the gcc program. Some programs expect the
cpp program in /lib and others expect to find it in /usr/bin. Create those symlinks by running:

root:~# cd $LFS/lib

root:lib# In —s ../usr/lib/gcc—lib/<host>/2.95.2/cpp cpp
root:lib# cd $LFS/ustr/lib

root:lib# In —s gcc-lib/<host>/2.95.2/cpp cpp
root:lib# cd $LFS/usr/bin

root:bin# In -s gcc cc

Replace <host> with the directory where the gcc—2.95.2 files are installed (which is i686—unknown-linux
in my case).

Installing Glibc

A note on the glibc—crypt package
An excerpt from the README file that is distributed with the glibc—crypt package:

The add-on is not included in the main distribution of the GNU C library because some governments, most
notably those of France, Russia, and the US, have very restrictive rules governing the distribution and use o
encryption software. Please read the node "Legal Problems" in the manual for more details.

In particular, the US does not allow export of this software without a licence, including via the Internet. So
please do not download it from the main FSF FTP site at ftp.gnu.org if you are outside the US. This softwar
was completely developed outside the US.

"This software" refers to the glibc—crypt package at ftp://ftp.gwdg.de/pub/linux/glibc/. This law only affects

people who don't live in the US. It's not prohibited to import DES software, so if you live in the US you can
import the file safely from Germany without breaking cryptographic laws. This law is changing lately and |

Creating necessary symlinks 115

Linux From Scratch

don't know what the status of it is at the moment. Better be safe than sory.

Installing Glibc

Copy the Glibc—crypt and Glibc-linuxthreads archives into the unpacked glibc directory. Copy the
glibc—2.1.3-ctype.patch file to $LFS/usr/src

Unpack the glibc—crypt and glibc-linuxthreads archives there, but don't enter the created directories. Just
unpack and leave it with that.

A few default parameters of Glibc need to be changed, such as the directory where the shared libraries are
supposed to be installed in and the directory that contains the system configuration files. For this purpose yc
need to create the $LFS/usr/src/glibc—build directory and in that directory you create a new file
configparms containing:

Begin configparms

slibdir=/lib
sysconfdir=/etc

End configparms

Change to the $LFS/ustr/src/glibc-2.1.3 directory and install Glibc by running the following
commands if your system already had a suitable GCC version installed:

root:glibc-2.1.3# patch —pl < ../glibc-2.1.3—-ctype.patch
root:glibc-2.1.3# cd ../glibc—build

root:glibc—build# ../glibc-2.1.3/configure \

> ——prefix=/usr ——enable—add-ons

root:glibc—build# make

root:glibc—build# make install_root=$LFS install

Change to the $LFS/ustr/src/glibc-build directory and install Glibc by running the following
command if your system did not already have a suitable GCC version installed and you just installed
GCC-2.95.2 on your normal Linux system a little while ago:

root:glibc-2.1.3# patch —pl < ../glibc-2.1.3—-ctype.patch
root:glibc-2.1.3# cd ../glibc—build

Installing Glibc 116

Linux From Scratch

root:glibc—build# CC=/usr/local/gcc2952/bin/gcc \
> ../glibc—2.1.3/configure ——prefix=/usr \

> ——enable—-add-ons

root:glibc—build# make

root:glibc—build# make install_root=$LFS install

Copying old NSS library files
If your normal Linux system runs glibc-2.0, you need to copy the NSS library files to the LFS partition.

Certain statically linked programs still depend on the NSS library, especially programs that need to lookup
usernames,userid’'s and groupid's. You can check which C library version your normal Linux system uses by

running:

root:~# Is /lib/libc*

Your system uses glib—2.0 if there is a file that looks like libc-2.0.7.s0
Your system uses glibc-2.1 if there is a file that looks like libc-2.1.3.s0

Of course, the micro version number can be different (you could have libc-2.1.2 or libc-2.1.1 for example).

If you have a libc-2.0.x file copy the NSS library files by running:

root:~# cp —av /lib/libnss* $LFS/lib

There are a few distributions that don't have files from which you can see which version of the C Library it
is. If that's the case, it will be hard to determine which C library version you exactly have. Try to obtain this
information using your distribution's installation tool. It often says which version it has available. If you can't
figure out at all which C Library version is used, then copy the NSS files anyway and hope for the best.
That's the best advise | can give I'm afraid.

Installing Grep

Install Grep by running the following commands:

root:grep—2.4.2# ./configure ——prefix=/usr ——disable—nls

Copying old NSS library files 117

Linux From Scratch

root:grep—-2.4.2# make —e LDFLAGS=-static
root:grep—-2.4.2# make —e prefix=$LFS/usr install

This package is known to cause static linking problems on certain platforms. If you're having trouble
compiling this package as well, you can download a patch from

http://www.linuxfromscratch.org/download/grep—2.4.2.patch.gz

Install this patch by running the following command:

root:grep—2.4.2# patch —Npl -i ../grep—2.4.2.patch

Now recompile the package using the same commands as above.

Installing Gzip

Install Gzip by running the following commands:

root:gzip—1.2.4a# ./configure ——prefix=/usr
root:gzip—1.2.4a# make —e LDFLAGS=-static
root:gzip—1.2.4a# make —e prefix=$LFS/usr install
root:gzip—1.2.4a# cd $LFS/usr/bin

root:bin# mv gunzip gzip $LFS/bin

This package is known to cause compilation problems on certain platforms. If you're having trouble
compiling this package as well, you can download a fixed package from

http://www.linuxfromscratch.org/download/gzip—1.2.4a.patch.gz

Install this patch by running the following command:

root:gzip—-1.2.4a# patch —-Npl -i../gzip—1.2.4a.patch.gz

Now recompile the package using the same commands as above.

Installing Gzip 118

http://www.linuxfromscratch.org/download/grep-2.4.2.patch.gz
http://www.linuxfromscratch.org/download/gzip-1.2.4a.patch.gz

Linux From Scratch

Installing Make

Install Make by running the following commands:

root:make—3.78.1# ./configure ——prefix=/usr ——disable-nls
root:make—-3.78.1# make —e LDFLAGS=-static
root:make-3.78.1# make —e prefix=$LFS/usr install

Installing Sed

Install Sed by running the following commands:

root:sed-3.02# ./configure ——prefix=/usr
root:sed-3.02# make —e LDFLAGS=-static
root:sed-3.02# make —e prefix=$LFS/usr install
root:sed-3.02# mv $LFS/usr/bin/sed $LFS/bin

This package is known to cause static linking problems on certain platforms. If you're having trouble
compiling this package as well, you can download a patch from

http://www.linuxfromscratch.org/download/sed—3.02.patch.gz

Install this patch by running the following command:

root:sed-3.02# patch —Npl -i ../sed-3.02.patch.gz

Now recompile the package using the same commands as above.

Installing Shellutils

Install Shellutils by running the following commands:

root:sh—utils—2.0# ./configure ——prefix=/usr ——disable—nls

Installing Make 119

http://www.linuxfromscratch.org/download/sed-3.02.patch.gz

Linux From Scratch

root:sh—utils—2.0# make —e LDFLAGS=-static
root:sh—utils-2.0# make —e prefix=$LFS/usr install
root:sh—utils—2.0# cd $LFS/usr/bin

root:/bin# mv date echo false pwd stty $LFS/bin
root:bin# mv su true uname hostname $LFS/bin

Installing Tar

Install Tar by running the following commands:

root:tar-1.13# ./configure ——prefix=/usr ——disable-nls
root:tar-1.13# make —e LDFLAGS=-static
root:tar-1.13# make —e prefix=$LFS/usr install
root:tar—1.13# mv $LFS/usr/bin/tar $LFS/bin

Installing Textutils

Install Textutuils by running the following commands:

root:textutils—2.0# ./configure ——prefix=/usr
root:textutils—2.0# make
root:textutils—2.0# make install
root:textutils—2.0# mv /usr/bin/cat /bin

Creating passwd and group files

Create a new file $LFS/etc/passwd containing the following:

root::0:0:root:/root:/bin/bash

Create a new file $LFS/etc/group containing the following:

Installing Tar 120

Linux From Scratch

root::0:

Installing Tar 121

Installing basic system software

The installation of all the software is pretty straightforward and you'll think it's so much easier and shorter
to give the generic installation instructions for each package and only explain how to install something if a
certain package requires an alternate installation method. Although | agree with you on that, I, however,
choose to give the full instructions for each and every package. This is simply to avoid any possible
confusion and errors.

Entering the chroot'ed environment

It's time to enter our chroot'ed environment now in order to install the rest of the software we need.

Enter the following commands to setup the chroot'ed environment. From this point on there's no need to us
the $LFS variable anymore, because everything you do will be restricted to the LFS patrtition (since / is
actually /mnt/xxx but the shell doesn't know that).

root:~# cd $LFS/root
root:root# chroot $LFS bash ——login

Now that we are inside a chroot'ed environment, we can continue to install all the basic system software.
Make sure you execute all the following commands in this chapter from within the chroot'ed environment.

Installing Ed

Install Ed by running the following commands:

root:/usr/src/ed—-0.2# ./configure ——prefix=/usr
root:/usr/src/ed—0.2# make
root:/usr/src/ed—0.2# make install

Installing Patch

Install Patch by running the following commands:

Installing basic system software 122

Linux From Scratch

root:patch—-2.5.4# ./configure ——prefix=/usr
root:patch-2.5.4# make
root:patch-2.5.4# make install

Installing GCC

After you unpacked the gcc—2.95.2 archive don't enter the newly created gcc—2.95.2 directory but stay in
the /usr/src directory. Install GCC by running the following commands:

root:src# mkdir /usr/src/gcc—build

root:src# cd /usr/src/gcc—build

root:.gcc—build# ../gcc—-2.95.2/configure \

> ——prefix=/usr ——with—local—prefix=/usr \

> ——with—gxx-include—dir=/usr/include/g++ \

> ——enable-shared ——enable-languages=c,c++
root:gcc—build# make bootstrap
root:gcc—build# make install

Installing Bison

Install Bison by running the following commands:

root:bison—-1.28# ./configure ——prefix=/usr
——datadir=/usr/share/bison
root:bison—-1.28# make

root:bison—-1.28# make install

Installing Mawk

Install Mawk by running the following commands:

root:mawk-1.3.3# ./configure
root:mawk-1.3.3# make
root:mawk—1.3.3# make —e BINDIR=/usr/bin

Installing GCC 123

Linux From Scratch

MANDIR=/usr/share/man/man1 install
root:mawk—-1.3.3# cd /usr/bin
root:in# In —s mawk awk

Installing Findutils

Install Findutils by running the following commands:

root:findutils—4.1# ./configure ——prefix=/usr
root:findutils—4.1# make
root:findutils—4.1# make install

This package is known to cause compilation problem. If you're having trouble compiling this package as

well, you can download a patch from _http://www.linuxfromscratch.org/download/findutils—4.1.patch.gz

Install this patch by running the following command:

root:findutils—4.1# patch —Np1 -i ../findutils—4.1.patch.gz

Now recompile the package using the same commands as above.

Installing Termcap

Install Termcap by running the following commands:

root:termcap—1.3# ./configure ——prefix=/usr
root:termcap—-1.3# make
root:termcap—1.3# make install

Installing Ncurses

Install Ncurses by running the following commands:

Installing Findutils 124

http://www.linuxfromscratch.org/download/findutils-4.1.patch.gz

Linux From Scratch

root:ncurses—4.2# ./configure ——prefix=/usr ——with—shared
root:ncurses—4.2# make
root:ncurses—4.2# make install

Installing Less

Install Less by running the following commands:

root:less—340# ./configure ——prefix=/usr
root:less—-340# make

root:less—340# make install
root:less—340# mv /usr/bin/less /bin

Installing Perl

Install Perl by running the following commands:

root:perl-5.6.0# ./Configure
root:perl—-5.6.0# make
root:perl-5.6.0# make test
root:perl-5.6.0# make install

Note that you have to change the installation path to /usr yourself. The Perl installation defaults to the
lusr/local/subdir

Also note that a few tests during the make test phase will fail because we don't have network support
installed yet.

Installing M4

Install M4 by running the following commands:

Installing Less 125

Linux From Scratch

root:m4-1.4# ./configure ——prefix=/usr
root:m4-1.4# make
root:m4-1.4# make install

Installing Texinfo

Install Texinfo by running the following commands:

root:texinfo—4.0# ./configure ——prefix=/usr
root:texinfo—4.0# make
root:texinfo—4.0# make install

Installing Autoconf

Install Autoconf by running the following commands:

root:autoconf-2.13# ./configure ——prefix=/usr
root:autoconf-2.13# make
root:autoconf-2.13# make install

Installing Automake

Install Automake by running the following commands:

root:automake—1.4# ./configure ——prefix=/usr
root:automake—1.4# make install

Installing Bash

Install Bash by running the following commands:

Installing Texinfo

126

Linux From Scratch

root:bash—2.04# ./configure ——prefix=/usr
root:bash-2.04# make

root:bash-2.04# make install
root:bash-2.04# logout

root:root# mv $LFS/usr/bin/bash $LFS/bin
root:root# chroot $LFS bash ——login

Installing Flex

Install Flex by running the following commands:

root:flex—2.5.4a# ./configure ——prefix=/usr
root:flex—2.5.4a# make
root:flex—2.5.4a# make install

Installing Binutils

Install Binutils by running the following commands:

root:binutils—2.9.5.0.37# ./configure ——prefix=/usr
root:binutils—2.9.5.0.37# make
root:binutils-2.9.5.0.37# make install

Installing Bzip2

Install Bzip2 by running the following commands:

root:bzip2-0.9.5d# make
root:bzip2-0.9.5d# make PREFIX=/usr install
root:bzip2-0.9.5d# cd /usr/bin

root:bin# mv bunzip2 bzip2 /bin

Installing Flex 127

Linux From Scratch

Installing Diffutils

Install Diffutils by running the following commands:

root:diffutils—2.7# ./configure ——prefix=/usr
root:diffutils—2.7# make
root:diffutils—2.7# make install

Installing Linux Kernel

We won't be compiling a new kernel image yet. We'll do that after we have finished the installation of the
basic system software in this chapter. But because certain software need the kernel header files, we're goin
to unpack the kernel archive now and set it up so that we can compile package that need the kernel.

Create the kernel configuration file by running the following command:

root:linux# make menuconfig

You don't have to configure anything at this point yet. Exit the configuration program immediately and
when asked whether you want to save the configuration file or not, choose yes.

Now run the following commands to set up all the dependencies correctly:

root:linux# make dep

Now that that's done, we need to create the $LFS/usr/include/linux and the
$LFS/usr/include/asm symlinks. Create them by running the following commands:

root:~# cd $LFS/usr/include
root:include# In —s ../src/linux/include/linux linux
root:include# In —s ../src/linux/include/asm asm

Installing Diffutils 128

Linux From Scratch

Installing E2fsprogs

Install E2fsprogs by running the following commands:

root:e2fsprogs—1.18# ./configure ——prefix=/usr
——with—root—prefix=/

root:e2fsprogs—-1.18%# make
root:e2fsprogs—-1.18%# make install
root:e2fsprogs—-1.18# cd /usr/sbhin

root:shin# mv *e2* *fs* mklost+found /sbin

Installing File

Install File by running the following commands:

root:file—3.26# ./configure ——prefix=/usr
root:file—=3.26# make
root:file—3.26# make install

Installing Fileutils

Install Fileutils by running the following commands:

root:fileutils—4.0# ./configure ——prefix=/usr
root:fileutils—4.0# make

root:fileutils—4.0# make install

root:fileutils—4.0# cd /usr/bin

root:bin# mv chgrp chmod chown cp dd df In /bin
root:bin# mv Is mkdir mknod mv rm rmdir sync /bin

Installing E2fsprogs 129

Linux From Scratch

Installing Grep

Install Grep by running the following commands:

root::grep—2.4.2# ./configure ——prefix=/usr
root:grep—2.4.2# make
root:grep—2.4.2# make install

Installing Groff

Install Groff by running the following commands:

root:groff-1.15# ./configure ——prefix=/usr
root:groff-1.15# make
root:groff-1.15# make install

Installing Gzip

Install Gzip by running the following commands:

root:gzip—1.2.4a# ./configure ——prefix=/usr
root:gzip—1.2.4a# make
root:gzip—1.2.4a# make install
root:gzip—1.2.4a# cd /usr/bin

root:bin# mv gunzip gzip /bin

Installing Ld.so

Install Ld.so by running the following commands:

Installing Grep

130

Linux From Scratch

root:ld.s0-1.9.10# cd util

root:util# make Idd Idconfig

root:util# cp Idd /bin

root:util# cp Idconfig /shin

root:util# cd ../man

root:man# cp Idd.1 /usr/share/man/manl
root:man# cp *.8 /usr/share/man/man8
root:man# rm /usr/bin/ldd

Installing Libtool

Install Libtool by running the following commands:

root:libtool-1.3.4# ./configure ——prefix=/usr
root:libtool-1.3.4# make
root:libtool-1.3.4# make install

Installing Linux86

Install Linux86 by running the following commands:

root:linux—86# cd as

root:as# make

root:as# make install

root:as# cd ../Id

root:ld# make 1d86

root:ld# make install

root:ld# cd ../man

root:man# cp as86.11d86.1 /usr/share/man/manl

Installing Make

Install Make by running the following commands:

Installing Libtool 131

Linux From Scratch

root:make—3.78.1# ./configure ——prefix=/usr
root:make—3.78.1# make
root:make—3.78.1# make install

Installing Shell Utils

Install Shellutils by running the following commands:

root:sh—utils—2.0# ./configure ——prefix=/usr
root:sh—utils—2.0# make
root:sh—utils—2.0# make install
root:sh—utils—2.0# cd /usr/bin

root:bin# mv date echo false pwd stty /bin
root:bin# mv su true uname hostname /bin

Installing Shadow Password Suite

Install the Shadow Password Suite by running the following commands:

root:shadow—-19990827# ./configure ——prefix=/usr
root:shadow—-19990827# make
root:shadow-19990827# make install
root:shadow—-19990827# cd etc

root:etc# cp limits login.access login.defs.linux shells
suauth /etc

root:etc# mv /etc/login.defs.linux /etc/login.defs

Installing Man

Install Man by running the following commands:

root:man-1.5h1# ./configure —default
root:man-1.5h1# make
root:man-1.5h1# make install

Installing Shell Utils 132

Linux From Scratch

Installing Modutils

Install Modutils by running the following commands:

root:modutils—2.3.9# ./configure
root:modutils—2.3.9% make
root:modutils—2.3.9%# make install

Installing Procinfo

Install Procinfo by running the following commands:

root:procinfo—17# make
root:procinfo—17# make install

Installing Procps

Install Procps by running the following commands:

root:procps—2.0.6%# gcc —c watch.c
root:procps—2.0.6# make
root:procps—2.0.6# make —e XSCPT="" install
root:procinfo—17# mv /usr/bin/kill /bin

Installing Psmisc

Install Psmisc by running the following commands:

Installing Modutils

133

Linux From Scratch

root:psmisc-19# make
root:psmisc-19# make install

Installing Sed

Install Sed by running the following commands:

root:sed-3.02# ./configure ——prefix=/usr
root:sed-3.02# make

root:sed-3.02# make install
root:sed-3.02# mv /usr/bin/sed /bin

Installing Start—-stop—daemon

Install Start—stop—daemon by running the following commands:

root:ssd—0.4.1# make
root:ssd—0.4.1# make install

Installing Sysklogd

Install Sysklogd by running the following commands:

root:sysklogd-1.3-31# make
root:sysklogd-1.3—-31# make install

Installing Sed

134

Linux From Scratch

Installing Sysvinit

Install Sysvinit by running the following commands:

root:sysvinit-2.78# cd src
root:sysvinit—-2.78# make
root:sysvinit-2.78# make install

Installing Tar

Install Tar by running the following commands:

root:tar-1.13# ./configure ——prefix=/usr
root:tar-1.13# make

root:tar-1.13# make install
root:tar—1.13# mv /usr/bin/tar /bin

Installing Textutils

Install Textutuils by running the following commands:

root:textutils—2.0# ./configure ——prefix=/usr
root:textutils—2.0# make
root:textutils—2.0# make install
root:textutils—2.0# mv /usr/bin/cat /bin

Installing Vim

You need to unpack both the vim-rt and vim-src packages to install Vim. Install Vim by running the

following commands:

Installing Sysvinit

135

Linux From Scratch

root:.vim-5.6# ./configure ——prefix=/usr
root:vim-5.6# make

root:vim—5.6# make install
root:vim—5.6# cd /usr/bin

root:bin# In —s vim vi

Installing Util-Linux

Before we can install the package we have to edit the MCONFIG file, find and modify the following
variables as follows:

HAVE_PASSWD=yes
HAVE_SLN=yes
HAVE_TSORT=yes

Install Util-Linux by running the following commands:

root:util-linux—2.10h# groupadd —g 5 tty
root:util-linux—2.10h# ./configure
root:util-linux—2.10h# make
root:util-linux—2.10h# make install

Installing Pmac-utils

Install Pmac-utils by running the following commands:

root:pmac-utils—-1.1.1# make clock
root:pmac-utils—1.1.1# cp clock /shin
root:pmac-—utils—-1.1.1# rm /shin/hwclock

Create a new file /sbin/hwclock containing the following:

Installing Util-Linux 136

Linux From Scratch

#!/bin/sh
Begin /sbin/hwclock

/sbin/clock —-s

End /sbin/hwclock

Set the right permissions by running the following command:

root:~# chmod 755 /shin/hwclock

Installing Util-Linux 137

Removing old NSS library files

If you have copied the NSS Library files from your normal Linux system to the LFS system (because your
normal system runs glibc-2.0) it's time to remove them now by running:

root:~# rm /lib/libnss*.so.1 /lib/libnss*2.0*

Removing old NSS library files 138

Configuring essential software

Now that all software is installed, all that we need to do to get a few programs running properly is to create
their configuration files.

Configuring Glibc
We need to create the /etc/nsswitch.conf file. Although glibc should provide defaults when this file is
missing or corrupt, it's defaults don't work work well with networking which will be dealt with in a later

chapter. Also, our timezone needs to be setup.

Create a new file /etc/nsswitch.conf containing:

Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files
netgroup: db files
End /etc/nsswitch.conf
Run the tzselect script and answer the questions regarding your timezone. When you're done, the script

will give you the location of the timezone file you need.

Create the /etc/localtime symlink by running:

root:~# cd /etc

root:etc# rm localtime

root:etc# In —s ../usr/share/zoneinfo/<tzselect's output>\
> |ocaltime

Configuring essential software 139

Linux From Scratch

tzselect's output can be something like EST5EDT or Canada/Eastern. The symlink you would create with
that information would be In —s ../usr/share/zoneinfo/EST5EDT localtime or In —s
..lusr/share/zoneinfo/Canada/Eastern localtime

Configuring Dynamic Loader

By default the dynamic loader searches a few default paths for dynamic libraries, so there normally isn't a
need for the /etc/ld.so.conf file unless you have extra directories in which you want the system to
search for paths. The /usr/local/lib directory isn't searched through for dynamic libraries by default,

so we want to add this path so when you install software you won't be suprised by them not running for som
reason.

Create a new file /etc/ld.so.conf containing the following:

Begin /etc/ld.so.conf
/lib

fusr/lib
lusr/local/lib

End /etc/ld.so.conf

Although it's not necessary to add the /lib and /usr/lib directories it doesn't hurt. This way you see
right away what's being searched and don't have to remeber the default search paths if you don't want to.

Configuring Sysklogd

Create the /etc/syslog.conf file containing the following:

Begin /etc/syslog.conf

auth,authpriv.* —/var/log/auth.log

* *;auth,authpriv.none —/var/log/sys.log
daemon.* —/var/log/daemon.log

kern.* —/var/log/kern.log

mail.* —/var/log/mail.log

user.* —/var/log/user.log

*.emerg *

End /etc/syslog.conf

Configuring Dynamic Loader 140

Linux From Scratch

Configuring Shadow Password Suite

This package contains the utilities to modify user's passwords, add new users/groups, delete users/groups
and more. I'm not going to explain to you what ‘password shadowing' means. You can read all about that in
the doc/HOWTO file. There's one thing you should keep in mind, if you decide to use shadow support, that
programs that need to verify passwords (examples are xdm, ftp daemons, pop3 daemons, etc) need to be
'shadow-compliant’, eg. they need to be able to work with shadowed passwords.

If you decide you don't want to use shadowed passwords (after you're read the doc/HOWTO document),
you still use this archive since the utilities in this archive are also used on system which have shadowed
passwords disabled. You can read all about this in the HOWTO. Also note that you can switch between
shadow and non-shadow at any point you want.

Now is a very good moment to read chapter 5 of the doc/HOWTO file. You can read how you can test if
shadowing works and if not, how to disable it. If it doesn't work and you haven't tested it, you'll end up with
an unusable system after you logout of all your consoles, since you won't be able to login anymore. You car
easily fix this by passing the init=/sbin/sulogin parameter to the kernel, unpack the util-linux archive, go to
the login—utils directory, build the login program and replace the /bin/login by the one in the util-linux
package. Things are never hopelessly messed up (at least not under Linux), but you can avoid a hassle by
testing properly and reading manuals ;)

Configuring Sysvinit

Create a new file /etc/inittab containing the following:

Begin /etc/inittab
id:2:initdefault;
si::sysinit:/etc/init.d/rcS
su:S:wait:/sbin/sulogin
[0:0:wait:/etc/init.d/rc O
[1:1:wait:/etc/init.d/rc 1
[2:2:wait:/etc/init.d/rc 2
[3:3:wait:/etc/init.d/rc 3
14:4:wait:/etc/init.d/rc 4
I5:5:wait:/etc/init.d/rc 5
16:6:wait:/etc/init.d/rc 6

ft:6:respawn:/shin/sulogin

Configuring Shadow Password Suite 141

Linux From Scratch

ca:12345:ctrlaltdel:/sbin/shutdown —t1 —a —r now

1:2345:respawn:/shin/agetty /dev/ttyl 9600
2:2345:respawn:/sbin/agetty /dev/tty2 9600
3:2345:respawn:/sbin/agetty /dev/tty3 9600
4:2345:respawn:/sbin/agetty /dev/tty4 9600
5:2345:respawn:/sbin/agetty /dev/tty5 9600
6:2345:respawn:/sbin/agetty /dev/tty6 9600

End /etc/inittab

Creating the /var/run/utmp file

Programs like login, shutdown, uptime and others want to read from and write to the /var/run/utmp file.
This file contains information about who is currently logged in. It also contains information on when the
computer was last booted and shutdown.

Create the /var/run/utmp and give it the proper permissions by running the following commands:

root:~# touch /var/run/utmp
root:~# chmod 644 /var/run/utmp

Configuring Vim

By default Vim runs in vi compatible mode. Some people might like this, but | have a high preference to
run vim in vim mode (else | wouldn't have included Vim in this book but the original Vi). Create the
/root/.vimrc containing the following:

set nocompatible
set bs=2

Creating the /var/run/utmp file 142

Chapter 12. Creating system boot scripts

Chapter 12. Creating system boot scripts 143

What is being done here

This chapter will create the necessary scripts that are run at boottime. These scripts perform tasks such as
remounting the root file system mounted read—only by the kernel into read—write mode, activiating the swap

partition(s), running a check on the root file system to make sure it's intact and starting the daemons that the
system uses.

What is being done here 144

Create the directories and master files

We need to start by creating a few extra directories that are used by the boot scripts. Create these directori
by running:

root:~# cd /etc
root:etc# mkdir rcO.d rcl.d rc2.d rc3.d
root:etc# mkdir rc4.d rc5.d rc6.d init.d rcS.d

The first main bootscript is the /etc/init.d/rc script. Create a new file
[etc/init.d/rc containing the following:

#!/bin/sh

Begin /etc/init.d/rc

#

By Jason Pearce - jason.pearce@linux.org
#

Un—-comment the following for debugging.
debug=echo

#

Start script or program.
#

startup() {

case "$1"in

*.sh)

$debug sh "$@"

)
$debug "$@"

esac

}

Ignore CTRL-C only in this shell, so we can interrupt subprocesses.
trap ":" INT QUIT TSTP

Set onlcr to avoid staircase effect.
stty onlcr 0>&1

Now find out what the current and what the previous runlevel are.
runlevel=$RUNLEVEL

Create the directories and master files 145

Linux From Scratch

Get first argument. Set new runlevel to this argument.

["$1"1=""] && runlevel=$1

if ["$runlevel" =""]

then

echo "Usage: $0 <runlevel>" >&2
exit 1

fi

previous=$PREVLEVEL
["$previous" ="'] && previous=N

export runlevel previous
Is there an rc directory for this new runlevel?

if [—d /etc/rc$runlevel.d]

then

First, run the KILL scripts for this runlevel.
if [$previous =N]

then

for i in /etc/rc$runlevel.d/K*

do

[!-f$i] && continue

suffix=${i#/etc/rc$runlevel.d/K[0-9][0-9]}
previous_start=/etc/rc$previous.d/S[0-9][0-9]$suffix

Stop the service if there is a start script
in the previous run level.
[! —f $previous_start | && continue

startup $i stop
done
fi

Now run the START scripts for this runlevel.
for i in /etc/rc$runlevel.d/S*

do

[!—f$i] && continue

if [$previous =N]

then

Find start script in previous runlevel and

stop script in this runlevel.
suffix=${i#/etc/rc$runlevel.d/S[0-9][0-9]}
stop=/etc/rc$runlevel.d/K[0-9][0-9]$suffix
previous_start=/etc/rc$previous.d/S[0-9][0-9]$suffix

If there is a start script in the previous
level

Create the directories and master files 146

Linux From Scratch

and _no_ stop script in this level, we don't

have to re—start the service.

[-f $previous_start] && [! —f $stop] && continue
fi

case "$runlevel" in
0|6)
startup $i stop

*)
startup $i start

esac
done
fi

End /etc/init.d/rc

The second main bootscript is the rcS script. Create a new file /etc/init.d/rcS containing the
following:

#!/bin/sh
Begin /etc/init.d/rcS

runlevel=S

previevel=N

umask 022

export runlevel previevel

trap ":" INT QUIT TSTP

foriin /etc/rcS.d/S??*
do

[!-f "$i"] && continue;
$i start

done

End /etc/init.d/rcS

Create the directories and master files 147

Creating the reboot script

Create a new file /etc/init.d/reboot containing the following:

#!/bin/sh
Begin /etc/init.d/reboot

echo "System reboot in progress..."
/sbin/reboot —d —f —i

End /etc/init.d/reboot

Creating the reboot script 148

Creating the halt script

Create a new file /etc/init.d/halt containing the following:

#!/bin/sh
Begin /etc/init.d/halt

/sbin/halt —d —f —i —p

End /etc/init.d/halt

Creating the halt script 149

Creating the mountfs script

Create a new file /etc/init.d/mountfs containing the following:

#!/bin/sh
Begin /etc/init.d/mountfs

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

echo —n "Remounting root file system in read—-write mode..."
/bin/mount —n —o remount,rw /
check_status

echo > /etc/mtab
/bin/mount —f —o remount,rw /

echo —n "Mounting proc file system..."
/bin/mount proc
check_status

End /etc/init.d/mountfs

Creating the mountfs script 150

Creating the umountfs script

Create a new file /etc/init.d/umountfs containing the following:

#!/bin/sh
Begin /etc/init.d/umountfs

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

echo —n "Deactivating swap..."
/sbin/swapoff —a
check_status

echo —n "Unmounting file systems..."
/binfumount —a -r
check_status

End /etc/init.d/umountfs

Creating the umountfs script 151

Creating the sendsignals script

Create a new file /etc/init.d/sendsignals containing the following:

#!/bin/sh
Begin /etc/init.d/sendsignals

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

echo —n "Sending all processes the TERM signal..."
/sbin/killall5 —15
check_status

echo —n "Sending all processes the KILL signal..."
/sbin/killall5 -9
check_status

End /etc/init.d/sendsignals

Creating the sendsignals script 152

Creating the checkroot script

Create a new file /etc/init.d/checkroot containing the following:

#!/bin/sh
Begin /etc/init.d/checkroot

echo —n "Activating swap..."
/sbin/swapon —a

if [—f /fastboot]
then
echo "Fast boot, no file system check"

/bin/mount —n —o remount,ro /
if[$?7=0]
then

if [—f /forcecheck]
then

force="-f"
else

echo "Checking root file system..."
Isbin/fsck $force —a /

if[$? —gt 1]
then
echo
echo "fsck failed. Please repair your file system manually by"
echo "running /sbin/fsck without the —a option"
echo
echo "Please note that the file system is currently mounted in"
echo "read-only mode."
echo

echo "l will start sulogin now. CTRL+D will reboot your system."

echo
/sbin/sulogin
/sbin/reboot —f
fi
else

echo "Cannot check root file system because it is not mounted in"

echo "read—only mode."
fi
fi

Creating the checkroot script

153

Linux From Scratch

End /etc/init.d/checkroot

Creating the checkroot script 154

Creating the setclock script

Create a new file /etc/init.d/setclock containing the following:

#!/bin/sh
Begin /etc/init.d/setclock

check_status()
{
if[$?7=0]
then echo "™
else
echo "FAILED"
fi

}

echo —n "Setting clock..."
/sbin/hwclock
check_status

End /etc/init.d/setclock

Creating the setclock script 155

Creating the sysklogd script

Create a new file /etc/init.d/sysklogd containing the following:

#!/bin/sh
Begin /etc/init.d/sysklogd

check_status()
{
if[$?7=0]
then

echo "OK"
else

echo "FAILED"
fi

}

case "$1"in
start)
echo —n "Starting system log daemon..."
start-stop—daemon -S —q -0 —x /usr/sbin/syslogd —— -m 0
check_status

echo —n "Starting kernel log daemon..."
start—stop—daemon -S —g —o —x /usr/sbin/klogd
check_status

stop)
echo —n "Stopping kernel log daemon..."
start—stop—daemon -K —gq —o —p /var/run/klogd.pid
check_status

echo —n "Stopping system log daemon..."
start—stop—daemon -K —q —o —p /var/run/syslogd.pid
check_status

reload)
echo —n "Reloading system load daemon configuration file..."
start-stop—daemon -K —q -0 -s 1 —p /var/run/syslogd.pid
check_status

restart)
echo —n "Stopping kernel log daemon..."
start—stop—daemon -K —g —o —p /var/run/klogd.pid

Creating the sysklogd script 156

Linux From Scratch

check_status

echo —n "Stopping system log daemon..."
start—stop—daemon -K —q —o —p /var/run/syslogd.pid
check_status

sleep 1

echo —n "Starting system log daemon..."
start-stop—daemon -S —q -0 —x /usr/sbin/syslogd —— -m 0
check_status

echo —n "Starting kernel log daemon..."
start—stop—daemon -S —g —o —x /usr/sbin/klogd
check_status

*)
echo "Usage: $0 {start|stop|reload|restart}"
exit 1

esac

End /etc/init.d/sysklogd

Creating the sysklogd script 157

Setting up symlinks and permissions

Give these files the proper permissions and create the necessary symlinks by running the following
commands:

root:~# cd /etc/init.d
root:init.d# chmod 755 rcS reboot halt mountfs umountfs
root:init.d# chmod 755 sendsignals checkroot sysklogd

root:init.d#
root:rcO.d#
root:rcO.d#
root:rcO.d#
root:rcO.d#
root:rcO.d#
root:rc6.d#
root:rc6.d#
root:rc6.d#
root:rc6.d#
root:rc6.d#
root:rcS.d#
root:rcS.d#
root:rcS.d#
root:rcS.d#
root:rc2.d#

cd ../rc0.d

In —s ../init.d/sysklogd K90sysklogd

In —s ../init.d/sendsignals S80sendsignals
In —=s ../init.d/umountfs S90umountfs

In —s ../init.d/halt S99halt

cd ../rc6.d

In —s ../init.d/sysklogd K90sysklogd

In —s ../init.d/sendsignals S80sendsignals
In —s ../init.d/umountfs S90umountfs

In —s ../init.d/reboot S99reboot

cd ../rcS.d

In —s ../init.d/setclock SOl1setclock

In —s ../init.d/checkroot SO5checkroot

In —s ../init.d/mountfs S10mountfs

cd /etc/rc2.d

In —s ../init.d/sysklogd S03sysklogd

Setting up symlinks and permissions

158

Creating the /etc/fstab file

In order for certain programs to be able to determine where certain partitions are supposed to be mounted |
default, the /etc/fstab file is used. Create a new file /etc/fstab containing the following:

Begin /etc/fstab

/dev/<LFS—partition designation> / ext2 defaults 0 1
/dev/<swap—partition designation> none swap sw 00
proc /proc proc defaults 0 0

End /etc/fstab

Replace <LFS—partition designation> and <swap-—partition designation> with the appropriate devices
(/dev/hda5 and /dev/hda6 in my case).

Creating the /etc/fstab file 159

Chapter 13. Setting up basic networking

Chapter 13. Setting up basic networking 160

Introduction

This chapter will setup basic networking. Although you might not be connected to a network, Linux
software uses network functions anyway. We'll be installing at least the local loopback device and a network
card as well if applicable. Also the proper bootscripts will be created so that networking will be enabled

during boot time.

Introduction 161

Installing network software

Installing Netkit—base

Install Netkit—base by running the following commands:

root:netkit—-base-0.17...
root:netkit—base-0.17..
root:netkit—-base-0.17...
root:netkit—-base-0.17...
root:netkit—base-0.17..

letc

#
H#
#
#

Jconfigure ——prefix=/usr
make

make install

cd etc.sample

Jetc.sample# cp services protocols

Installing Net—tools

Install Net-tools by running the following commands:

root:net—tools—1.54# make
root:net—tools—1.54# make install

Installing network software

162

Creating network boot scripts

Creating the /etc/init.d/localnet bootscript

Create a new file /etc/init.d/localnet containing the following:

#!/bin/sh
Begin /etc/init.d/localnet

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi
}
echo —n "Setting up loopback device..."
[sbin/ifconfig lo 127.0.0.1
check_status

echo —n "Setting up hostname..."
/binfhostname ——file /etc/hostname
check_status

End /etc/init.d/localnet

Setting up permissions and symlink

Set the proper file permissions and create the necessary symlink by running the following commands:

root:~# cd /etc/init.d

root:init.d# chmod 755 /etc/init.d/localnet
root:init.d# cd ../rcS.d

root:rcS.d# In —s ../init.d/localnet SO3localnet

Creating network boot scripts 163

Linux From Scratch

Creating the /etc/hostname file

Create a new file /etc/hostname and put the hostname in it. This is not the FQDN (Fully Qualified
Domain Name). This is the name you wish to call your computer in a network. An example:

Ifs

The file must not contain empty lines or spaces after the hostname. Don't press enter either when you
entered the name.

Creating the /etc/hosts file

If you want to configure a network card, you have to decide on the IP-address, FQDN and possible aliases
for use in the /etc/hosts file. An example is:

<my-IP> myhost.mydomain.org aliases

Make sure the IP—address is in the private network IP—-address range. Valid ranges are:

Class Networks
A 10.0.0.0
B 172.16.0.0 through 172.31.0.0
C 192.168.0.0 through 192.168.255.0
A valid IP address could be 192.168.1.1. A valid FQDN for this IP could be www.linuxfromscratch.org

If you're not going to use a network card, you still need to come up with a FQDN. This is necessary for
programs like Sendmail to operate correctly (in fact; Sendmail won't run when it can't determine the FQDN).

If you don't configure a network card, create a new file /etc/hosts containing:

Begin /etc/hosts (no network card version)

Creating the /etc/hostname file 164

Linux From Scratch

127.0.0.1 www.linuxfromscratch.org <contents of /etc/hostname> localhost

End /etc/hosts (no network card version)

If you do configure a network card, create a new file /etc/hosts containing:

Begin /etc/hosts (network card version)

127.0.0.1 localhost
192.168.1.1 www.linuxfromscratch.org <contents of /etc/hostname>

End /etc/hosts (network card version)

Of course, change the 192.168.1.1 and www.linuxfromscratch.org to your own liking (or requirements if

you are assigned an IP-address by a network/system administrator and you plan on connecting this machir
to that network).

Creating the /etc/init.d/ethnet file

This section only applies if you are going to configure a network card. If you're not, skip this section.

Create a new file /etc/init.d/ethnet containing the following:

#1/bin/sh
Begin /etc/init.d/ethnet

check_status()
{
if[$?7=0]
then
echo "OK"
else
echo "FAILED"
fi

}

IPADDR="209.83.245.12" # Replace with your own IP address
NETMAKSK="255.255.255.0" # Replace with your own Netmask
BROADCAST="209.83.245.255" # Replace with your own Broadcast addr.
GATEWAY="209.83.245.1" # Replace with your own Gateway address

Creating the /etc/init.d/ethnet file 165

Linux From Scratch

echo —n "Setting up ethO0..."
/sbin/ifconfig ethO $IPADDR broadcast $BROADCAST netmask $NETMASK
check_status

echo "Adding default gateway..."
/sbin/route add default gw $GATEWAY metric 1
check_status

End /etc/init.d/ethnet

Setting up permissions and symlink

Set the proper file permissions and create the necessary symlink by running the following commands:

root:~# cd /etc/init.d

root:init.d# chmod 755 /etc/init.d/ethnet
root:init.d# cd ../rc2.d

root:rc2.d# In —s ../init.d/ethnet S10ethnet

Setting up permissions and symlink 166

Chapter 14. Making the LFS system bootable

Chapter 14. Making the LFS system bootable 167

Introduction

This chapter will make LFS bootable. This chapter deals with building a new kernel for our new LFS
system and moving the kernel to the MacOS side so we can boot the LFS system.

Introduction 168

Installing a kernel

A kernel is the heart of a Linux system. We could use the kernel image from our normal system, but we
might as well compile a new kernel from the most recent kernel sources available.

Building the kernel involves a few steps: configuring it and compiling it. There are a few ways to configure
the kernel. If you don't like the way this book does it, read the README file and find out what your other
options are. Run the following commands to build the kernel:

If you need to apply the Kernel USB patch, do that by running the following commands:

root:~# cd /usr/src/linux
root:linux# patch —pl -i ../ush-2.3.50-1-for-2.2.14.diff.gz

The build the actual kernel, run the following commands:

root:linux# make pmac_config
root:linux# make menuconfig
root:linux# make dep

root:linux# make vmlinux
root:linux# cp System.map /boot
root:linux# cp vmlinux /boot/lfskernel

Installing a kernel 169

Updating BootX

Now we have to get /boot/lfskernel to the Mac OS side so we can boot our LFS system. There are a few
ways to copy the /boot/Ifskernel file to the Linux kernel folder on the Mac OS side.

The easiest way is be to mount a Mac HFS patrtition under Linux and copy the kernel to that partition in the
right folder. The Linux kernel currently does not support the HFS+ partition, do do not attempt to mount a
Mac HFS+ (also known as HFS Extended) partition under Linux.

Copy the kernel to your Mac HFS partition by running the following commands:

root:~# mkdir /mnt/exchange

root:~# mount -t hfs /dev/sdal /mnt/exchange
root:~# cp /boot/Ifskernel /mnt/exchange
root:~# umount /dev/sdal

Of course, replace /dev/sdal by your Mac partition's designation.

If you can't mount the Mac patrtition for some reason (for example because it's a HFS+ partition) you'll have
to email the kernel to yourself. Use a shell on your normal Linux's system (not the the chroot'ed environmen
to obtain the kernel image. Compress it with gzip and attach it to an email. Boot into your MacOS and
download the email. You can use the MacGzip application to ungzip the kernel image and move it to the
"Linux Kernels" folder under "System Folder". If you don't have MacGzip installed, you can download it

from _http://macinsearch.com/infomac/cmp/mac—gzip—=111.html

Of course, if the kernel is small enough to fit on a floppy disk, and your Mac has a floppy drive, you can
transfer it that way. Of if you have a ZIP drive at your disposal, you can transfer it on that medium.

Updating BootX 170

http://macinsearch.com/infomac/cmp/mac-gzip-111.html

Testing the system

Now that all software has been installed, bootscripts have been written and the local network is setup, it's
time for you to reboot your computer and test these new scripts to verify that they actually work. You first
want to execute them manually from the /etc/init.d directory so you can fix the most obvious problems
(typos, wrong paths and such). When those scripts seem to work just fine manually they should also work
during a system start or shutdown. There's only one way to test that. Shutdown your system with shutdown
now and reboot into LFS. After the reboot you will have a normal login prompt like you have on your normal
Linux system (unless you use XDM or some sort of other Display Manger (like KDM - KDE's version of
XDM).

When you are at the login prompt, login as user root and when asked for a password just press enter. The
first thing you want to do is set a password for user root by running the following command:

:root:~# passwd

At this point your basic LFS system is ready for use. Everything else that follows now is optional, so you
can skip packages at your own discretion. But do keepein mind that if you skip packages (especially librarie
you can break dependencies of other packages. For example, when the Lynx browser is installed, the zlib
library is installed as well. You can decide to skip the zlib library, but this library isn't used by Lynx alone.
Other packages require this library too. The same may apply to other libraries and programs.

Testing the system 171

V. Part IV — Appendixes

Table of Contents

A. Package descriptions

B. Resources

IV. Part IV — Appendixes 172

Appendix A. Package descriptions

Appendix A. Package descriptions 173

Introduction

This appendix describes the following aspect of each and every package that is installed in this book:

What every package contains

What every program from a package does

The packages are listed in the same order as they are installed in chapter 5 (Intel system) or chapter 11 (P!
systems).

Most information about these packages (especially the descriptions of it) come from the man pages from
those packages. I'm not going to print the entire man page, just the core elements to make you understand
what a program does. If you want to know full details on a program, | suggest you start by reading the
complete man page in addition to this appendix.

You will also find that certain packages are documented more in depth than others. The reason is that | just
happen to know more about certain packages than | know about others. If you have anything to add on the

following descriptions, please don't hesitate to email me. This list is going to contain an in depth description
of every package installed, but | can't do this on my own. | have had help from various people but more help
is needed.

Please note that currently only what a package does is described and not why you need to install it. That wi
be added later.

Introduction 174

Glibc

Contents

The Glibc package contains the GNU C Library.

Description

The C Library is a collection of commonly used functions in programs. This way a programmer doens't
need to create his own functions for every single task. The most common things like writing a string to your
screen are already present and at the disposal of the programmer.

The C library (actually almost every library) come in two flavours: dynamic ones and static ones. In short
when a program uses a static C library, the code from the C library will be copied into the executable file.
When a program uses a dynamic library, that executable will not contain the code from the C library, but
instead a routine that loads the functions from the library at the time the program is run. This means a
significant decrease in the file size of a program. If you don't understand this concept, you better read the
documentation that comes with the C Library as it is too complicated to explain here in one or two lines.

Glibc 175

Ed

Contents

The Ed package contains the ed program.

Description

Ed is a line—oriented text editor. It is used to create, display, modify and otherwise manipulate text files.

Ed 176

Patch

Contents

The Patch package contains the patch program.

Description

The patch program modifies a file according to a patch file. A patch file usually is a list created by the diff
program that contains instructions on how an original file needs to be modified. Patch is used a lot for sourc
code patches since it saves time and space. Imagine you have a package that is 1MB in size. The next vers
of that package only has changes in two files of the first version. You can ship an entirely new package of
1MB or provide a patch file of 1KB which will update the first version to make it identical to the second
version. So if you have downloaded the first version already, a patch file can save you a second large
download.

Patch 177

GCC

Contents

The GCC package contains compilers, preprocessors and the GNU C++ Library.

Description

Compiler

A compiler translates source code in text format to a format that a computer understands. After a source
code file is compiled into an object file, a linker will create an executable file from one or more of these
compiler generated object files.

Pre—processor

A pre—processor pre—processes a source file, such as including the contents of header files into the source
file. You generally don't do this yourself to save yourself a lot of time. You just insert a line like #include
<filename>. The pre—processor file insert the contents of that file into the source file. That's one of the thing:
a pre—processor does.

C++ Library

The C++ library is used by C++ programs. The C++ library contains functions that are frequently used in
C++ programs. This way the programmer doens't have to write certain functions (such as writing a string of
text to the screen) from scratch every time he creates a program.

GCC 178

Bison

Contents

The Bison package contains the bison program.

Description

Bison is a parser generator, a replacement for YACC. YACC stands for Yet Another Compiler Compiler.
What is Bison then? It is a program that generates a program that analyses the structure of a textfile. Instea
of writing the actual program you specify how things should be connected and with those rules a program is

constructed that analyses the textfile.

There are alot of examples where structure is needed and one of them is the calculator.

Given the string :

1+2*3

You can easily come to the result 7. Why ? Because of the structure. You know how to interpretet the string
The computer doesn't know that and Bison is a tool to help it understand by presenting the string in the

following way to the compiler:

You start at the bottom of a tree and you come across the numbers 2 and 3 which are joined by the
multiplication symbol, so the computers multiplies 2 and 3. The result of that multiplication is remembered
and the next thing that the computer sees is the result of 2*3 and the number 1 which are joined by the add
symbol. Adding 1 to the previous result makes 7. In calculating the most complex calculations can be brokel
down in this tree format and the computer just starts at the bottom and works it's way up to the top and com
with the correct answer. Of course, Bison isn't only used for calculators alone.

Bison 179

Mawk

Contents

The Mawk package contains the mawk program.

Description

Mawk is an interpreter for the AWK Programming Language. The AWK language is useful for
manipulation of data files, text retrieval and processing, and for prototyping and experimenting with
algorithms.

Mawk 180

Findutils

Contents

The Findutils package contains the find, locate, updatedb and xargs programs.

Description
Find

The find program searches for files in a directory hierarchy which match a certain criteria. If no criteria is
given, it lists all files in the current directory and it's subdirectories.

Locate

Locate scans a database which contain all files and directories on a filesystem. This program lists the files
and directories in this database matching a certain criteria. If you're looking for a file this program will scan
the database and tell you exactly where the files you requested are located. This only makes sense if your
locate database is fairly up—to—date else it will provide you with out-of-date information.

Updatedb

The updatedb program updates the locate database. It scans the entire file system (including other file
system that are currently mounted unless you specify it not to) and puts every directory and file it finds into
the database that's used by the locate program which retrieves this information. It's a good practice to updat
this database once a day so that you are ensured of a database that is up—to—date.

Xargs

The xargs command applies a command to a list of files. If you need to perform the same command on
multiple files, you can create a file that contains all these files (one per line) and use xargs to perform that
command on the list.

Findutils 181

Termcap

Contents

The Termcap package contains the termcap library.

Description

The termcap library contains C functions that enable programs to send control strings to terminals in a way
independent of the terminal type. The GNU termcap library does not place an arbitrary limit on the size of
termcap entries, unlike most other termcap libraries.

The use of termcap is discouraged. Termcap is being phased out in favor of the terminfo—based ncurses
library, which contains an emulation of the termcap library routines in addition to an excellent curses
implementation. The reason for having Termcap installed is there are one or two programs that specifically
need this library and don't know about the NCurses library (yet).

Termcap 182

Ncurses

Contents

The Ncurses package contains the ncurses, panel, menu and form libraries. It also contains the tic, infocmg
clear, tput, toe and tset programs.

Description

The libraries

The libraries that make up the Ncurses library are used to display text (often in a fancy way) on your screen
An example where ncurses is used is in the kernel's "make menuconfig" process. The libraries contain
routines to create panels, menu's, form and general text display routines.

Tic

Tic is the terminfo entry—description compiler. The program translates a terminfo file from source format
into the binary format for use with the ncurses library routines. Terminfo files contain information about the
capabilities of your terminal.

Infocmp

The infocmp program can be used to compare a binary terminfo entry with other terminfo entries, rewrite a
terminfo description to take advantage of the use= terminfo field, or print out a terminfo description from
binary file (term) in a variety of formats (the opposite of what tic does).

clear

The clear program clears your screen if this is possible. It looks in the environment for the terminal type an
then in the terminfo database to figure out how to clear the screen.

tput

The tput program uses the terminfo database to make the values of terminal-dependent capabilities and
information available to the shell, to initialize or reset the terminal, or return the long name of the requested
terminal type.

Ncurses 183

Linux From Scratch

toe

The toe program lists all available terminal types by primary name with descriptions.

tset

The Tset program initializes terminals so they can be used, but it's not widely used anymore. It's provided
for 4.4BSD compatibility.

toe 184

Less

Contents

The Less package contains the less program

Description

The less program is a file pager (or text viewer). It displays the contents of a file with the ability to scroll.
Less is an improvement on the common pager called "more". Less has the ability to scroll backwards throug
files as well and it doesn't need to read the entire file when it starts, which makes it faster when you are

reading large files.

Less 185

Perl

Contents

The Perl package contains Perl — Practical Extraction and Report Language

Description

Perl combines the features and capabilities of C, awk, sed and sh into one powerful programming language

Perl 186

M4

Contents

The M4 package contains the M4 processor

Description

M4 is a macro processor. It copies input to output expanding macros as it goes. Macros are either builtin o
user—defined and can take any number of arguments. Besides just doing macro expansion m4 has builtin

functions for including named files, running UNIX commands, doing integer arithmetic, manipulating text in
various ways, recursion, etc. M4 can be used either as a front—end to a compiler or as a macro processor i

own right.

M4 187

Texinfo

Contents

The Texinfo package contains the info, install-info, makeinfo, texi2dvi and texindex programs

Description
info

The info program reads Info documents, usually contained in your /usr/doc/info directory. Info documents
are like man(ual) pages, but they tend to be more in depth than just explaining the options to a program.

install-info

The install-info program updates the info entries. When you run the info program a list with available
topics (ie: available info documents) will be presented. The install-info program is used to maintain this list
of available topics. If you decice to remove info files manually, you need to delete the topic in the index file
as well. This program is used for that. It also works the other way around when you add info documents.

makeinfo

The makeinfo program translates Texinfo source documents into various formats. Available formats are:
info files, plain text and HTML.

texi2dvi

The texi2dvi program prints Texinfo documents

texindex

The texindex program is used to sort Texinfo index files.

Texinfo 188

Autoconf

Contents

The Autoconf package contains the autoconf, autoheader, autoreconf, autoscan, autoupdate and ifnames
programs

Description

autoconf

Autoconf is a tool for producing shell scripts that automatically configure software source code packages to
adapt to many kinds of UNIX-like systems. The configuration scripts produced by Autoconf are independer
of Autoconf when they are run, so their users do not need to have Autoconf.

autoheader

The autoheader program can create a template file of C #define statements for configure to use

autoreconf

If you have a lot of Autoconf-generated configure scripts, the autoreconf program can save you some work
It runs autoconf (and autoheader, where appropriate) repeatedly to remake the Autoconf configure scripts a
configuration header templates in the directory tree rooted at the current directory.

autoscan

The autoscan program can help you create a configure.in file for a software package. autoscan examines
source files in the directory tree rooted at a directory given as a command line argument, or the current
directory if none is given. It searches the source files for common portability problems and creates a file
configure.scan which is a preliminary configure.in for that package.

autoupdate

The autoupdate program updates a configure.in file that calls Autoconf macros by their old names to use th
current macro names.

ifnames

ifnames can help when writing a configure.in for a software package. It prints the identifiers that the

Autoconf 189

Linux From Scratch

package already uses in C preprocessor conditionals. If a package has already been set up to have some
portability, this program can help you figure out what its configure needs to check for. It may help fill in
some gaps in a configure.in generated by autoscan.

Autoconf 190

Automake

Contents

The Autoconf package contains the aclocal and automake programs

Description

aclocal

Automake includes a number of Autoconf macros which can be used in your package; some of them are
actually required by Automake in certain situations. These macros must be defined in your aclocal.m4;
otherwise they will not be seen by autoconf.

The aclocal program will automatically generate aclocal.m4 files based on the contents of configure.in. Thit
provides a convenient way to get Automake—provided macros, without having to search around. Also, the
aclocal mechanism is extensible for use by other packages.

automake

To create all the Makefile.in's for a package, run the automake program in the top level directory, with no
arguments. automake will automatically find each appropriate Makefile.am (by scanning configure.in) and
generate the corresponding Makefile.in.

Automake 191

Bash

Contents

The Bash package contains the bash program

Description

Bash is the Bourne—Again SHell, which is a widely used command interpreter on Unix systems. Bash is a
program that reads from standard input, the keyboard. You type something and the program will evaluate
what you have typed and do something with it, like running a program.

Bash 192

Flex

Contents

The Flex package contains the flex program

Description

Flex is a tool for generating programs which regognize patterns in text. Pattern recognition is very useful in
many applications. You set up rules what to look for and flex will make a program that looks for those
patterns. The reason people use flex is that it is much easier to set up rules for what to look for than to write
the actual program that finds the text.

Flex 193

Binutils

Description

The Binutils package contains the Id, as, ar, nm, objcopy, objdump, ranlib, size, strings, strip, c++filt,
addr2line and nlmconv programs

Description

Id

Id combines a number of object and archive files, relocates their data and ties up symbol references. Oft
the last step in building a new compiled program to run is a call to Id.

as

as is primarily intended to assemble the output of the GNU C compiler gcc for use by the linker Id.

ar

The ar program creates, modifies, and extracts from archives. An archive is a single file holding a collectiol
of other files in a structure that makes it possible to retrieve the original individual files (called members of
the archive).

nm

nm lists the symbols from object files.

objcopy

objcopy utility copies the contents of an object file to another. objcopy uses the GNU BFD Library to read
and write the object files. It can write the destination object file in a format different from that of the source
object file.

objdump

objdump displays information about one or more object files. The options control what particular
information to display. This information is mostly useful to programmers who are working on the
compilation tools, as opposed to programmers who just want their program to compile and work.

Binutils 194

Linux From Scratch

ranlib

ranlib generates an index to the contents of an archive, and stores it in the archive. The index lists each
symbol defined by a member of an archive that is a relocatable object file.

size

size lists the section sizes ——and the total size—— for each of the object files objfile in its argument list. By
default, one line of output is generated for each object file or each module in an archive.

strings

For each file given, strings prints the printable character sequences that are at least 4 characters long (&
number specified with an option to the program) and are followed by an unprintable character. By default, it
only prints the strings from the initialized and loaded sections of object files; for other types of files, it prints
the strings from the whole file.

strings is mainly useful for determining the contents of non—text files.

strip

strip discards all or specific symbols from object files. The list of object files may include archives. At least
one object file must be given. strip modifies the files named in its argument, rather than writing modified
copies under different names.

c++filt

The C++ language provides function overloading, which means that you can write many functions with the
same name (providing each takes parameters of different types). All C++ function names are encoded into
low-level assembly label (this process is known as mangling). The c++filt program does the inverse
mapping: it decodes (demangles) low-level names into user—level names so that the linker can keep these
overloaded functions from clashing.

addr2line

addr2line translates program addresses into file names and line numbers. Given an address and an
executable, it uses the debugging information in the executable to figure out which file name and line numt
are associated with a given address.

ranlib 195

Linux From Scratch

nimconv

nlmconv converts relocatable object files into the NetWare Loadable Module files, optionally reading
header files for NLM header information.

nimconv 196

Bzip2

Contents

The Bzip2 packages contains the bzip2, bunzip2, bzcat and bzip2recover programs.

Description
Bzip2

bzip2 compresses files using the Burrows—Wheeler block sorting text compression algorithm, and Huffmar
coding. Compression is generally considerably better than that achieved by more conventional
LZ77/LZ78-based compressors, and approaches the performance of the PPM family of statistical
COmpressors.

Bunzip2

Bunzip2 decompresses files that are compressed with bzip2.

bzcat

bzcat (or bzip2 —dc) decompresses all specified files to the standard output.

bzip2recover

bzip2recover recovers data from damaged bzip2 files.

Bzip2 197

Diffutils

Contents

The Diffutils packagec contains the cmp, diff, diff3 and sdiff programs.

Description

cmp and diff

cmp and diff both compare two files and report their differences. Both programs have extra options which
compare files in different situations.

diff3

The difference between diff and diff3 is that diff comprares 2 files, diff3 compares 3 files.

sdiff

sdiff merges two two files and interactively outputs the results.

Diffutils 198

Linux kernel

Contents

The Linux kernel package contains the Linux kernel.

Description

The Linux kernel is at the core of every Linux system. It's what makes Linux tick. When you turn on your
computer and boot a Linux system, the very first piece of Linux software that gets loaded is the kernel. The
kernel initializes the system's hardware components such as serial ports, parallel ports, sound cards, netwo
cards, IDE controllers, SCSI controllers and a lot more. In a nutshell the kernel makes the hardware availabl

so that the software can run.

Linux kernel 199

E2fsprogs

Contents

The e2fsprogs package contains the chattr, Isattr, uuidgen, badblocks, debugfs, dumpe2fs, e2fsck, e2label,
fsck, fsck.ext2, mke2fs, mkfs.ext2, mklost+found and tune2fs programs.

Description

chattr

chattr changes the file attributes on a Linux second extended file system.

[sattr

Isattr lists the file attributes on a second extended file system.

uuidgen

The uuidgen program creates a new universally unigue identifier (UUID) using the libuuid library. The new
UUID can reasonably be considered unique among all UUIDs created on the local system, and among UUI
created on other systems in the past and in the future.

badblocks

badblocks is used to search for bad blocks on a device (usually a disk partition).

debugfs

The debugfs program is a file system debugger. It can be used to examine and change the state of an ext
file system.

dumpe2fs

dumpe2fs prints the super block and blocks group information for the filesystem present on a specified
device.

E2fsprogs 200

Linux From Scratch

e2fsck and fsck.ext2

e2fsck is used to check a Linux second extended file system. fsck.ext2 does the same as e2fsck.

e2label

e2label will display or change the filesystem label on the ext2 filesystem located on the specified device.

fsck

fsck is used to check and optionally repair a Linux file system.

mke2fs and mkfs.ext2

mke2fs is used to create a Linux second extended file system on a device (usually a disk partition).
mkfs.ext2 does the same as mke2fs.

mklost+found

mklost+found is used to create a lost+found directory in the current working directory on a Linux second
extended file system. mklost+found pre-allocates disk blocks to the directory to make it usable by e2fsck.

tune2fs

tune2fs adjusts tunable filesystem parameters on a Linux second extended filesystem.

e2fsck and fsck.ext2 201

File
Contents

The File package contains the file program.

Description

File tests each specified file in an attempt to classify it. There are three sets of tests, performed in this or
filesystem tests, magic number tests, and language tests. The first test that succeeds causes the file type t
printed.

File 202

Fileutils

Contents

The Fileutils package contains the chgrp, chmod, chown, cp, dd, df, dir, dircolors, du, install, In, Is, mkdir,
mkfifo, mknod, mv, rm, rmdir, sync, touch and vdir programs.

Description
chgrp

chgrp changes the group ownership of each given file to the named group, which can be either a group
name or a numeric group ID.

chmod

chmod changes the permissions of each given file according to mode, which can be either a symbolic
representation of changes to make, or an octal number representing the bit pattern for the new permissions

chown

chown changes the user and/or group ownership of each given file.

cp

cp copies files from one place to another.

dd

dd copies a file (from the standard input to the standard output, by default) with a user—selectable blocksiz
while optionally performing conversions on it.

df

df displays the amount of disk space available on the filesystem containing each file name argument. If no
file name is given, the space available on all currently mounted filesystems is shown.

Fileutils 203

Linux From Scratch

Is, dir and vdir

dir and vdir are versions of Is with different default output formats. These programs list each given file or
directory name. Directory contents are sorted alphabetically. For Is, files are by default listed in columns,
sorted vertically, if the standard output is a terminal; otherwise they are listed one per line. For dir, files are
by default listed in columns, sorted vertically. For vdir, files are by default listed in long format.

dircolors

dircolors outputs commands to set the LS _COLOR environment variable. The LS _COLOR variable is use
to change the default color scheme used by Is and related utilities.

du

du displays the amount of disk space used by each argument and for each subdirectory of directory
arguments.

install

install copies files and sets their permission modes and, if possible, their owner and group.

In

In makes hard or soft (symbolic) links between files.

mkdir

mkdir creates directories with a given name.

mkfifo

mkfifo creates a FIFO with each given name.

mknod

mknod creates a FIFO, character special file, or block special file with the given file name.

Is, dir and vdir 204

Linux From Scratch

mv

mv moves files from one directory to another or renames files, depending on the arguments given to mv.

m

rm removes files or directories.

rmdir

rmdir removes directories, if they are empty.

sync

sync forces changed blocks to disk and updates the super block.

touch

touch changes the access and modification times of each given file to the current time. Files that do not ex
are created empty.

mv 205

Grep

Contents

The grep package contains the egrep, fgrep and grep programs.

Description

egrep

egrep prints lines from files matching an extended regular expression pattern.

fgrep

fgrep prints lines from files matching a list of fixed strings, separated by newlines, any of which is to be
matched.

grep

grep prints lines from files matching a basic regular expression pattern.

Grep 206

Groff

Contents

The Groff packages contains the addftinfo, afmtodit, eqn, grodvi, groff, grog, grohtml, grolj4, grops, grotty,
hpftodit, indxbib, Ikbib, lookbib, neqgn, nroff, pfbtops, pic, psbb, refer, soelim, tbl, tfmtodit and troff
programs.

Description

addftinfo

addftinfo reads a troff font file and adds some additional font—-metric information that is used by the groff
system.

afmtodit

afmtodit creates a font file for use with groff and grops.

eqn

egn compiles descriptions of equations embedded within troff input files into commands that are understoo
by troff.

grodvi

grodvi is a driver for groff that produces TeX dvi format.

groff

groff is a front—end to the groff document formatting system. Normally it runs the troff program and a
postprocessor appropriate for the selected device.

grog

grog reads files and guesses which of the groff options —e, -man, -me, -mm, -ms, —p, -s, and -t are
required for printing files, and prints the groff command including those options on the standard output.

Groff 207

Linux From Scratch

grohtml

grohtml translates the output of GNU troff to html

grolj4

grolj4 is a driver for groff that produces output in PCL5 format suitable for an HP Laserjet 4 printer.

grops

grops translates the output of GNU troff to PostScript.

grotty

grotty translates the output of GNU troff into a form suitable for typewriter-like devices.

hpftodit

hpftodit creates a font file for use with groff —Tlj4 from an HP tagged font metric file.

indxbib

indxbib makes an inverted index for the bibliographic databases a specified file for use with refer, lookbib,
and Ikbib.

lkbib

Ikbib searches bibliographic databases for references that contain specified keys and prints any references
found on the standard output.

lookbib

lookbib prints a prompt on the standard error (unless the standard input is not a terminal), reads from the
standard input a line containing a set of keywords, searches the bibliographic databases in a specified file f
references containing those keywords, prints any references found on the standard output, and repeats this
process until the end of input.

grohtml 208

Linux From Scratch

negn

It is currently not known what negn is and what it does.

nroff

The nroff script emulates the nroff command using groff.

pfbtops

pfbtops translates a PostScript font in .pfb format to ASCII.

pic

pic compiles descriptions of pictures embedded within troff or TeX input files into commands that are
understood by TeX or troff.

psbb

psbb reads a file which should be a PostScript document conforming to the Document Structuring
conventions and looks for a %%BoundingBox comment.

refer

refer copies the contents of a file to the standard output, except that lines between .[and .] are interpreted
citations, and lines between .R1 and .R2 are interpreted as commands about how citations are to be pro

soelim

soelim reads files and replaces lines of the form .so file by the contents of file.

tbl

tbl compiles descriptions of tables embedded within troff input files into commands that are understood by
troff.

neqgn 209

Linux From Scratch

tfimtodit

tfmtodit creates a font file for use with groff —Tdvi

troff

troff is highly compatible with Unix troff. Usually it should be invoked using the groff command, which
will also run preprocessors and postprocessors in the appropriate order and with the appropriate options.

tfmtodit 210

Gzip
Contents

The Gzip package contains the gunzip, gzexe, gzip, zcat, zcmp, zdiff, zforece, zgrep, zmore and znew
programs.

Description

gunzip

gunzip decompresses files that are compressed with gzip.

gzexe

gzexe allows you to compress executables in place and have them automatically uncompress and execute
when you run them (at a penalty in performance).

gzip

gzip reduces the size of the named files using Lempel-Ziv coding (LZ77).

zcat

zcat uncompresses either a list of files on the command line or its standard input and writes the
uncompressed data on standard output

zcmp

zcmp invokes the cmp program on compressed files.

zdiff

zdiff invokes the diff program on compressed files.

zforce

zforce forces a .gz extension on all gzip files so that gzip will not compress them twice. This can be usefu
for files with names truncated after a file transfer.

Gzip 211

Linux From Scratch

zgrep

zgrep invokes the grep program on compressed files.

zmore

Zmore is a filter which allows examination of compressed or plain text files one screenful at a time on a
soft—copy terminal (similar to the more program).

znew

Znew recompresses files from .Z (compress) format to .gz (gzip) format.

zgrep 212

Ld.so

Contents

From the Ld.so package we're using the Idconfig and Idd programs.

Description

ldconfig

Idconfig creates the necessary links and cache (for use by the run-time linker, Id.so) to the most recent
shared libraries found in the directories specified on the command line, in the file /etc/ld.so.conf, and in the
trusted directories (/usr/lib and /lib). Idconfig checks the header and file names of the libraries it encounters

when determining which versions should have their links updated.

Idd

Idd prints the shared libraries required by each program or shared library specified on the command line.

Ld.so 213

Libtool

Contents

The Libtool package contains the libtool and libtoolize programs. It also contains the Itdl library.

Description

libtool

Libtool provides generalized library—building support services.

libtoolize

libtoolize provides a standard way to add libtool support to your package.

ltd| library

Libtool provides a small library, called “libltdl', that aims at hiding the various difficulties of dlopening
libraries from programmers.

Libtool 214

LiInux86

Contents

From the Linux86 package we're using the as86 and 1d86 programs.

Description

as86

as86 is an assembler for the 8086..80386 processors.

|d86

|d86 understands only the object files produced by the as86 assembler, it can link them into either an impu
or a separate I1&D executable.

Linux86 215

Lilo
Contents

The Lilo package contains the lilo program.

Description

lilo installs the Linux boot loader which is used to start a Linux system.

Lilo 216

Make

Contents

The Make package contains the make program.

Description

make determine automatically which pieces of a large program need to be recompiled, and issue the
commands to recompile them.

Make 217

Shellutils

Contents

The Shellutils package contains the basename, chroot, date, dirname, echo, env, expr, factor, false, groups
hostid, hostname, id, logname, nice, nohup, pathchk, pinky, printenv, printf, pwd, seq, sleep, stty, su, tee, te
true, tty, uname, uptime, users, who, whoami and yes programs.

Description

basename

basename strips directory and suffixes from filenames.

chroot

chroot runs a command or interactive shell with special root directory.

date

date displays the current time in a specified format, or sets the system date.

dirname

dirname strips non-directory suffixes from file name.

echo

echo displays a line of text.

env

env runs a program in a modified environment.

expr

expr evaluates expressions.

Shellutils 218

Linux From Scratch

factor

factor prints the prime factors of all specified integer numbers.

false

false always exits with a status code indicating failure.

groups

groups prints the groups a user is in.

hostid

hostid prints the numeric identifier (in hexadecimal) for the current host.

hostname

hostname sets or prints the name of the current host system

id

id prints the real and effective UIDs and GIDs of a user or the current user.

logname

logname prints the current user's login name.

nice

nice runs a program with modified scheduling priority.

nohup

nohup runs a command immune to hangups, with output to a non-tty

factor

219

Linux From Scratch

pathchk

pathchk checks whether file names are valid or portable.

pinky

pinky is a lightweight finger utility which retrieves information about a certain user

printenv

printenv prints all or part of the environment.

printf

printf formats and print data (the same as the printf C function).

pwd

pwd prints the name of the current/working directory

seq

seq prints numbers in a certain range with a certain increment.

sleep

sleep delays for a specified amount of time.

stty

stty changes and prints terminal line settings.

Su

su runs a shell with substitute user and group IDs

pathchk

220

Linux From Scratch

tee

tee reads from standard input and write to standard output and files.

test

test checks file types and compares values.

true

True always exitx with a status code indicating success.

tty

tty prints the file name of the terminal connected to standard input.

uname

uname prints system information.

uptime

uptime tells how long the system has been running.

users

users prints the user names of users currently logged in to the current host.

who

who shows who is logged on.

whoami

whoami prints your effective userid.

tee 221

Linux From Scratch

yes

yes outputs a string repeatedly until killed.

yes 222

Shadow Password Suite

Contents

The Shadow Password Suite contains the chage, chfn, chsh, expiry, faillog, gpasswd, lastlog, login, newgry
passwd, sg, su, chpasswd, dpasswd, groupadd, groupdel, groupmod, grpck, grpconv, grpunconv, logoutd,
mkpasswd, newusers, pwck, pwconv, pwunconv, useradd, userdel, usermod and vipw programs.

Description

chage

chage changes the number of days between password changes and the date of the last password change

chfn

chfn changes user fullname, office number, office extension, and home phone number information for a
user's account.

chsh

chsh changes the user login shell.

expiry

It's currently unknown what this program is for.

faillog

faillog formats the contents of the failure log,/var/log/faillog, and maintains failure counts and limits.

gpasswd

gpasswd is used to administer the /etc/group file

lastlog

lastlog formats and prints the contents of the last login log, /var/log/lastlog. The login—-name, port, and last
login time will be printed.

Shadow Password Suite 223

Linux From Scratch

login

login is used to establish a new session with the system.

newgrp

newgrp is used to change the current group ID during a login session.

passwd

passwd changes passwords for user and group accounts.

S9

sg executes command as a different group ID.

Su

Change the effective user id and group id to that of a user. This replaces the su programs that's installed
from the Shellutils package.

chpasswd

chpasswd reads a file of user name and password pairs from standard input and uses this information to
update a group of existing users.

dpasswd

dpasswd adds, deletes, and updates dialup passwords for user login shells.

groupadd

The groupadd command creates a new group account using the values specified on the command line anc
the default values from the system.

login 224

Linux From Scratch

groupdel

The groupdel command modifies the system account files, deleting all entries that refer to group.

groupmod

The groupmod command modifies the system account files to reflect the changes that are specified on the
command line.

grpck

grpck verifies the integrity of the system authentication information.

grpconv

grpunconv converts to shadow group files from normal group files.

grpunconv

grpunconv converts from shadow group files to normal group files.

logoutd

logoutd enforces the login time and port restrictions specified in /etc/porttime.

mkpasswd

mkpasswd reads a file in the format given by the flags and converts it to the corresponding database file
format.

newusers

newusers reads a file of user name and cleartext password pairs and uses this information to update a gro
of existing users or to create new users.

pwck

pwck verifies the integrity of the system authentication information.

groupdel 225

Linux From Scratch

pwconv

pwconv converts to shadow passwd files from normal passwd files.

pwunconv

pwunconv converts from shadow passwd files to normal files.

useradd

useradd creates a new user or update default new user information.

userdel

userdel modifies the system account files, deleting all entries that refer to a specified login name.

usermod

usermod modifies the system account files to reflect the changes that are specified on the command line.

vipw and vigr

vipw and vigr will edit the files /etc/passwd and /etc/group, respectively. With the —s flag, they will edit the
shadow versions of those files, /etc/shadow and /etc/gshadow, respectively.

pwconv 226

Man

Contents

The Man package contains the man, apropos whatis and makewhatis programs.

Description

man

man formats and displays the on-line manual pages.

apropos

apropos searches a set of database files containing short descriptions of system commands for keywords
displays the result on the standard output.

whatis

whatis searches a set of database files containing short descriptions of system commands for keywords ar
displays the result on the standard output. Only complete word matches are displayed.

makewhatis

makewhatis reads all the manual pages contained in given sections of manpath or the preformatted pages
contained in the given sections of catpath. For each page, it writes a line in the whatis database; each line
consists of the name of the page and a short description, separated by a dash. The description is extrac
using the content of the NAME section of the manual page.

Man 227

Modutils

Contents

The Modutils package contains the depmod, genksyms, insmod, insmod_ksymoops_clean, kerneld,
kernelversion, ksyms, Ismod, modinfo, modprobe and rmmod programs.

Description

depmod

depmod handles dependency descriptions for loadable kernel modules.

genksyms

genksyms reads (on standard input) the output from gcc —E source.c and generates a file containing versi
information.

insmod

insmod installs a loadable module in the running kernel.

insmod_ksymoops_clean

insmod_ksymoops_clean deletes saved ksyms and modules not accessed in 2 days.

kerneld

kerneld performs kernel action in user space (such as on—demand loading of modules)

kernelversion

kernelversion reports the major version of the running kernel.

ksyms

ksyms displays exported kernel symbols.

Modutils 228

Linux From Scratch

Ismod

Ismod shows information about all loaded modules.

modinfo

modinfo examines an object file associated with a kernel module and displays any information that it can
glean.

modprobe

Modprobe uses a Makefile-like dependency file, created by depmod, to automatically load the relevant
module(s) from the set of modules available in predefined directory trees.

rmmod

rmmod unloads loadable modules from the running kernel.

Ismod 229

Procinfo

Contents

The Procinfo package contains the procinfo program.

Description

procinfo gathers some system data from the /proc directory and prints it nicely formatted on the standard
output device.

Procinfo 230

Procps

Contents

The Procps package contains the free, kill, oldps, ps, skill, snice, sysctl, tload, top, uptime, vmstat, w and
watch programs.

Description

free

free displays the total amount of free and used physical and swap memory in the system, as well as the
shared memory and buffers used by the kernel.

kill

kills sends signals to processes.

oldps and ps

ps gives a snapshot of the current processes.

skill

skill sends signals to process matching a criteria.

shice

shice changes the scheduling priority for process matching a criteria.

syscitl

sysctl modifies kernel parameters at runtime.

tload

tload prints a graph of the current system load average to the specified tty (or the tty of the tload process if
none is specified).

Procps 231

Linux From Scratch

top

top provides an ongoing look at processor activity in real time.

uptime

uptime gives a one line display of the following information: the current time, how long the system has beel
running, how many users are currently logged on, and the system load averages for the past 1, 5, and 15
minutes.

vmstat

vmestat reports information about processes, memory, paging, block 10, traps, and cpu activity.

w

w displays information about the users currently on the machine, and their processes.

watch

watch runs command repeatedly, displaying its output (the first screenfull).

top 232

Psmisc

Contents

The Psmisc package contains the fuser, killall and pstree programs.

Description

fuser

fuser displays the PIDs of processes using the specified files or file systems.

killall

killall sends a signal to all processes running any of the specified commands.

pstree

pstree shows running processes as a tree.

Psmisc 233

Sed

Contents

The Sed package contains the sed program.

Description

sed is a stream editor. A stream editor is used to perform basic text transformations on an input stream (a
file or input from a pipeline).

Sed 234

Start—stop—daemon

Contents

The Start—stop—daemon contains the start—-stop—daemon program.

Description

start—stop—daemon is used to control the creation and termination of system-level processes, usually the
ones started during the startup of the system.

Start—stop—daemon 235

Appendix B. Resources

Appendix B. Resources 236

Introduction

A list of books, HOWTOs and other documents you might find useful to download or buy follows. This list
is just a small list to start with. We hope to be able to expand this list in time as we come across more usefu
documents or books.

Introduction 237

Books
Sendmail published by O'Reilly. ISBN: 1-56592-222-0
Linux Network Administrator's Guide published by O'Reilly. ISBN: 1-56502-087-2

Running Linux published by O'Reilly. ISBN: 1-56592-151-8

Books 238

HOWTOs and Guides

All of the following HOWTOs can be downloaded from the Linux Documentation Project site at
http://www.linuxdoc.org

Linux Network Administrator's Guide
ISP-Hookup—-HOWTO

Powerup2Bash—-HOWTO

HOWTOs and Guides 239

http://www.linuxdoc.org

Other

The various man and info pages that come with the packages

Other 240

	Table of Contents
	Linux From Scratch
	Gerard Beekmans - Main document
	Michael Peters - Apple PowerPC additions

	Dedication
	Preface
	Who would want to read this book
	Who would not want to read this book
	Organization
	Part I - Introduction
	Part II - Installation of a basic system on Intel systems
	Part III - Installation of a basic system on Apple PowerPC systems
	Part IV - Appendixes

	I. Part I - Introduction
	Chapter 1. Introduction
	Introduction
	How things are going to be done
	Book versions
	Acknowledgements
	Changelog
	Mailinglists and archives
	lfs-discuss
	lfs-announce
	linux
	How to subscribe?
	How to unsubscribe?
	Mail archives

	Contact information
	Chapter 2. Important information
	About $LFS
	How to download the software
	How to install the software
	II. Part II - Installation of a basic system on Intel systems
	Chapter 3. Packages you need to download
	Chapter 4. Preparing a new partition
	Introduction
	Creating a new partition
	Creating a ext2 file system on the new partition
	Mounting the new partition
	Creating directories
	Copying the /dev directory
	Chapter 5. Installing basic system software
	How and why things are done
	About debugging symbols
	Preparing the LFS system for installing basic system software
	Installing Bash
	Installing Binutils
	Installing Bzip2
	Installing Diffutils
	Installing Fileutils
	Installing GCC on the normal system if necessary
	Installing GCC on the LFS system
	Creating necessary symlinks

	Installing Glibc
	A note on the glibc-crypt package
	Installing Glibc
	Copying old NSS library files

	Installing Grep
	Installing Gzip
	Installing Make
	Installing Sed
	Installing Shellutils
	Installing Tar
	Installing Textutils
	Creating passwd and group files

	Installing basic system software
	Entering the chroot'ed environment
	Installing Ed
	Installing Patch
	Installing GCC
	Installing Bison
	Installing Mawk
	Installing Findutils
	Installing Termcap
	Installing Ncurses
	Installing Less
	Installing Perl
	Installing M4
	Installing Texinfo
	Installing Autoconf
	Installing Automake
	Installing Bash
	Installing Flex
	Installing Binutils
	Installing Bzip2
	Installing Diffutils
	Installing Linux Kernel
	Installing E2fsprogs
	Installing File
	Installing Fileutils
	Installing Grep
	Installing Groff
	Installing Gzip
	Installing Ld.so
	Installing Libtool
	Installing Linux86
	Installing Lilo
	Installing Make
	Installing Shell Utils
	Installing Shadow Password Suite
	Installing Man
	Installing Modutils
	Installing Procinfo
	Installing Procps
	Installing Psmisc
	Installing Sed
	Installing Start-stop-daemon
	Installing Sysklogd
	Installing Sysvinit
	Installing Tar
	Installing Textutils
	Installing Vim
	Installing Util-Linux

	Removing old NSS library files
	Configuring essential software
	Configuring Glibc
	Configuring Dynamic Loader
	Configuring Lilo
	Configuring Sysklogd
	Configuring Shadow Password Suite
	Configuring Sysvinit
	Creating the /var/run/utmp file
	Configuring Vim

	Chapter 6. Creating system boot scripts
	What is being done here
	Create the directories and master files
	Creating the reboot script
	Creating the halt script
	Creating the mountfs script
	Creating the umountfs script
	Creating the sendsignals script
	Creating the checkroot script
	Creating the sysklogd script
	Setting up symlinks and permissions
	Creating the /etc/fstab file
	Chapter 7. Setting up basic networking
	Introduction
	Installing network software
	Installing Netkit-base
	Installing Net-tools

	Creating network boot scripts
	Creating the /etc/init.d/localnet bootscript
	Setting up permissions and symlink
	Creating the /etc/hostname file
	Creating the /etc/hosts file
	Creating the /etc/init.d/ethnet file
	Setting up permissions and symlink

	Chapter 8. Making the LFS system bootable
	Introduction
	Installing a kernel
	Adding an entry to LILO
	Testing the system
	III. Part III - Installation of a basic system on Apple PowerPC systems
	Chapter 9. Packages you need to download
	Chapter 10. Preparing a new partition
	Introduction
	Creating a new partition
	Mounting the new partition
	Creating directories
	Copying the /dev directory
	Chapter 11. Installing basic system software
	How and why things are done
	About debugging symbols
	Preparing the LFS system for installing basic system software
	Installing Bash
	Installing Binutils
	Installing Bzip2
	Installing Diffutils
	Installing Fileutils
	Installing GCC on the normal system if necessary
	Installing GCC on the LFS system
	Creating necessary symlinks

	Installing Glibc
	A note on the glibc-crypt package
	Installing Glibc
	Copying old NSS library files

	Installing Grep
	Installing Gzip
	Installing Make
	Installing Sed
	Installing Shellutils
	Installing Tar
	Installing Textutils
	Creating passwd and group files

	Installing basic system software
	Entering the chroot'ed environment
	Installing Ed
	Installing Patch
	Installing GCC
	Installing Bison
	Installing Mawk
	Installing Findutils
	Installing Termcap
	Installing Ncurses
	Installing Less
	Installing Perl
	Installing M4
	Installing Texinfo
	Installing Autoconf
	Installing Automake
	Installing Bash
	Installing Flex
	Installing Binutils
	Installing Bzip2
	Installing Diffutils
	Installing Linux Kernel
	Installing E2fsprogs
	Installing File
	Installing Fileutils
	Installing Grep
	Installing Groff
	Installing Gzip
	Installing Ld.so
	Installing Libtool
	Installing Linux86
	Installing Make
	Installing Shell Utils
	Installing Shadow Password Suite
	Installing Man
	Installing Modutils
	Installing Procinfo
	Installing Procps
	Installing Psmisc
	Installing Sed
	Installing Start-stop-daemon
	Installing Sysklogd
	Installing Sysvinit
	Installing Tar
	Installing Textutils
	Installing Vim
	Installing Util-Linux
	Installing Pmac-utils

	Removing old NSS library files
	Configuring essential software
	Configuring Glibc
	Configuring Dynamic Loader
	Configuring Sysklogd
	Configuring Shadow Password Suite
	Configuring Sysvinit
	Creating the /var/run/utmp file
	Configuring Vim

	Chapter 12. Creating system boot scripts
	What is being done here
	Create the directories and master files
	Creating the reboot script
	Creating the halt script
	Creating the mountfs script
	Creating the umountfs script
	Creating the sendsignals script
	Creating the checkroot script
	Creating the setclock script
	Creating the sysklogd script
	Setting up symlinks and permissions
	Creating the /etc/fstab file
	Chapter 13. Setting up basic networking
	Introduction
	Installing network software
	Installing Netkit-base
	Installing Net-tools

	Creating network boot scripts
	Creating the /etc/init.d/localnet bootscript
	Setting up permissions and symlink
	Creating the /etc/hostname file
	Creating the /etc/hosts file
	Creating the /etc/init.d/ethnet file
	Setting up permissions and symlink

	Chapter 14. Making the LFS system bootable
	Introduction
	Installing a kernel
	Updating BootX
	Testing the system
	IV. Part IV - Appendixes
	Appendix A. Package descriptions
	Introduction
	Glibc
	Contents
	Description

	Ed
	Contents
	Description

	Patch
	Contents
	Description

	GCC
	Contents
	Description
	Compiler
	Pre-processor
	C++ Library

	Bison
	Contents
	Description

	Mawk
	Contents
	Description

	Findutils
	Contents
	Description
	Find
	Locate
	Updatedb
	Xargs

	Termcap
	Contents
	Description

	Ncurses
	Contents
	Description
	The libraries
	Tic
	Infocmp
	clear
	tput
	toe
	tset

	Less
	Contents
	Description

	Perl
	Contents
	Description

	M4
	Contents
	Description

	Texinfo
	Contents
	Description
	info
	install-info
	makeinfo
	texi2dvi
	texindex

	Autoconf
	Contents
	Description
	autoconf
	autoheader
	autoreconf
	autoscan
	autoupdate
	ifnames

	Automake
	Contents
	Description
	aclocal
	automake

	Bash
	Contents
	Description

	Flex
	Contents
	Description

	Binutils
	Description
	Description
	ld
	as
	ar
	nm
	objcopy
	objdump
	ranlib
	size
	strings
	strip
	c++filt
	addr2line
	nlmconv

	Bzip2
	Contents
	Description
	Bzip2
	Bunzip2
	bzcat
	bzip2recover

	Diffutils
	Contents
	Description
	cmp and diff
	diff3
	sdiff

	Linux kernel
	Contents
	Description

	E2fsprogs
	Contents
	Description
	chattr
	lsattr
	uuidgen
	badblocks
	debugfs
	dumpe2fs
	e2fsck and fsck.ext2
	e2label
	fsck
	mke2fs and mkfs.ext2
	mklost+found
	tune2fs

	File
	Contents
	Description

	Fileutils
	Contents
	Description
	chgrp
	chmod
	chown
	cp
	dd
	df
	ls, dir and vdir
	dircolors
	du
	install
	ln
	mkdir
	mkfifo
	mknod
	mv
	rm
	rmdir
	sync
	touch

	Grep
	Contents
	Description
	egrep
	fgrep
	grep

	Groff
	Contents
	Description
	addftinfo
	afmtodit
	eqn
	grodvi
	groff
	grog
	grohtml
	grolj4
	grops
	grotty
	hpftodit
	indxbib
	lkbib
	lookbib
	neqn
	nroff
	pfbtops
	pic
	psbb
	refer
	soelim
	tbl
	tfmtodit
	troff

	Gzip
	Contents
	Description
	gunzip
	gzexe
	gzip
	zcat
	zcmp
	zdiff
	zforce
	zgrep
	zmore
	znew

	Ld.so
	Contents
	Description
	ldconfig
	ldd

	Libtool
	Contents
	Description
	libtool
	libtoolize
	ltdl library

	Linux86
	Contents
	Description
	as86
	ld86

	Lilo
	Contents
	Description

	Make
	Contents
	Description

	Shellutils
	Contents
	Description
	basename
	chroot
	date
	dirname
	echo
	env
	expr
	factor
	false
	groups
	hostid
	hostname
	id
	logname
	nice
	nohup
	pathchk
	pinky
	printenv
	printf
	pwd
	seq
	sleep
	stty
	su
	tee
	test
	true
	tty
	uname
	uptime
	users
	who
	whoami
	yes

	Shadow Password Suite
	Contents
	Description
	chage
	chfn
	chsh
	expiry
	faillog
	gpasswd
	lastlog
	login
	newgrp
	passwd
	sg
	su
	chpasswd
	dpasswd
	groupadd
	groupdel
	groupmod
	grpck
	grpconv
	grpunconv
	logoutd
	mkpasswd
	newusers
	pwck
	pwconv
	pwunconv
	useradd
	userdel
	usermod
	vipw and vigr

	Man
	Contents
	Description
	man
	apropos
	whatis
	makewhatis

	Modutils
	Contents
	Description
	depmod
	genksyms
	insmod
	insmod_ksymoops_clean
	kerneld
	kernelversion
	ksyms
	lsmod
	modinfo
	modprobe
	rmmod

	Procinfo
	Contents
	Description

	Procps
	Contents
	Description
	free
	kill
	oldps and ps
	skill
	snice
	sysctl
	tload
	top
	uptime
	vmstat
	w
	watch

	Psmisc
	Contents
	Description
	fuser
	killall
	pstree

	Sed
	Contents
	Description

	Start-stop-daemon
	Contents
	Description

	Appendix B. Resources
	Introduction
	Books
	HOWTOs and Guides
	Other

